Obesity develops largely due to genetic factors, with the genetic polymorphism of lipid metabolism enzymes being of particular importance. However, it is still unclear how the genetic variants of one of the key enzymes in lipid transport, lipoprotein lipase (LPL), are associated with the endocrine function of mesenchymal tissues in obesity. The current study was aimed at the investigation of the rs328 gene variant association with adipokines and myokines levels, as well as lipid metabolism indices in the blood of children and adolescents of both genders with obesity.
View Article and Find Full Text PDFObjective: The development of obesity and its metabolic complications is associated with dys-regulation of various intrinsic mechanisms, which control basic metabolic processes via changes in the expression of numerous regulatory genes. The main goal of this work was to study the association between the expression of insulin-like growth factors (IGF1 and IGF2) and IGF-binding proteins and insulin resistance in obese adolescents for evaluation of possible contribution of these genes in development of insulin resistance.
Methods: The expression of IGF1, IGF2, and IGFBPs mRNA was measured in blood of obese adolescents with normal insulin sensitivity and insulin resistance in comparison with the normal (control) individuals.
Apoptosis in tissues is induced by different kind of signals including endogenous aldehydes, such as 4-hydroxy-2, 3-nonenal. The accumulation rate of aldehydes in the cell is affected by conditions of oxidative stress. In the cell, aldehydes can be metabolized by various isoforms of aldehyde dehydrogenase, aldehyde reductase, and glutathione-S-transferase.
View Article and Find Full Text PDFIn order to investigate the possible reasons for age-related decrease in myocardium resistance to stress, we carried out a study of lipid peroxidation (LPO) stimulation features in the myocardium of adult (10-12 months) and aged (22-25 months) male Wistar rats during immobilization stress. In our studies of ascorbate-dependent LPO and induced chemiluminescence, we found that immobilization stress is accompanied by decreased efficiency in the induction of free radical processes in the heart of aged rats. An important cause of this phenomenon may be age-dependent changes in the catalytical properties of the cytosolic superoxide dismutase.
View Article and Find Full Text PDF