Multimode fibers are attractive for high-power lasers if transverse modes are efficiently controlled. Here, a dielectric thin-film mirror (R~20%) is micro-fabricated on the central area of the end face of a 1 km multimode 100/140 µm graded-index fiber and tested as the output mirror of a Raman laser with highly multimode (M~34) 940 nm diode pumping. In the cavity with highly reflective input FBG, Raman lasing of the Stokes wave at 976 nm starts at the threshold pump power of ~80 W.
View Article and Find Full Text PDFThermochemical laser-induced periodic surface structures (TLIPSS) are a relatively new type of periodic structures formed in the focal area of linear polarized laser radiation by the thermally stimulated reaction of oxidation. The high regularity of the structures and the possibility of forming high-ordered structures over a large area open up possibilities for the practical application for changing the optical and physical properties of materials surface. Since the mechanism of formation of these structures is based on a chemical oxidation reaction, an intriguing question involves the influence of air pressure on the quality of structure formation.
View Article and Find Full Text PDF