MsrB1 is a thiol-dependent enzyme that reduces protein methionine--sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain.
View Article and Find Full Text PDFAt over 200 years, the maximum lifespan of the bowhead whale exceeds that of all other mammals. The bowhead is also the second-largest animal on Earth, reaching over 80,000 kg. Despite its very large number of cells and long lifespan, the bowhead is not highly cancer-prone, an incongruity termed Peto's Paradox.
View Article and Find Full Text PDFDNA methylation serves as a powerful biomarker for disease diagnosis and biological age assessment. However, current analytical approaches often rely on linear models that cannot capture the complex, context-dependent nature of methylation regulation. Here we present MethylGPT, a transformer-based foundation model trained on 226,555 (154,063 after QC and deduplication) human methylation profiles spanning diverse tissue types from 5,281 datasets, curated 49,156 CpG sites, and 7.
View Article and Find Full Text PDFOpen scientific competitions have successfully driven biomedical advances but remain underutilized in aging research, where biological complexity and heterogeneity require methodological innovations. Here, we present the results from Phase I of the Biomarkers of Aging Challenge, an open competition designed to drive innovation in aging biomarker development and validation. The challenge leverages a unique DNA methylation dataset and aging outcomes from 500 individuals, aged 18 to 99.
View Article and Find Full Text PDFbioRxiv
October 2024
Aging-related decreases in cardiac and skeletal muscle function are strongly associated with various comorbidities. Elamipretide (ELAM), a novel mitochondrial-targeted peptide, has demonstrated broad therapeutic efficacy in ameliorating disease conditions associated with mitochondrial dysfunction across both clinical and pre-clinical models. ELAM is proposed to restore mitochondrial bioenergetic function by stabilizing inner membrane structure and increasing oxidative phosphorylation coupling and efficiency.
View Article and Find Full Text PDFAging is a complex process manifesting at molecular, cellular, organ, and organismal levels. It leads to functional decline, disease, and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying elastic net regularization to plasma proteome data of over 50,000 human subjects in the UK Biobank and other cohorts, we report interpretable organ-specific and conventional aging models trained on chronological age, mortality, and longitudinal proteome data.
View Article and Find Full Text PDFThe aging process involves numerous molecular changes that lead to functional decline and increased disease and mortality risk. While epigenetic aging clocks have shown accuracy in predicting biological age, they typically provide single estimates for the samples and lack mechanistic insights. In this study, we challenge the paradigm that aging can be sufficiently described with a single biological age estimate.
View Article and Find Full Text PDFThe naked mole rat (NMR), Heterocephalus glaber, is known as the longest-lived rodent and is extraordinarily resistant to hypoxia and cancer. Here, both NMR embryonic fibroblasts (NEFs) and their mouse counterparts (MEFs) were subjected to anoxic conditions (0% O2, 5% CO2). A combination of comparative transcriptomics and proteomics was then employed to identify differentially expressed genes (DEGs).
View Article and Find Full Text PDFAlthough cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells.
View Article and Find Full Text PDFRibosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age.
View Article and Find Full Text PDFA classical question in biology is how different processes are controlled in space and time, with research pointing to different mechanisms as timers. In this collection of Voices, we asked researchers to define their scientific questions related to time-keeping and the approaches they use to answer them.
View Article and Find Full Text PDFBy analyzing 15,000 samples from 348 mammalian species, we derive DNA methylation (DNAm) predictors of maximum life span ( = 0.89), gestation time ( = 0.96), and age at sexual maturity ( = 0.
View Article and Find Full Text PDFRibosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age.
View Article and Find Full Text PDFIron serves as a cofactor for enzymes involved in several steps of protein translation, but the control of translation during iron limitation is not understood at the molecular level. Here, we report a genome-wide analysis of protein translation in response to iron deficiency in yeast using ribosome profiling. We show that iron depletion affects global protein synthesis and leads to translational repression of multiple genes involved in iron-related processes.
View Article and Find Full Text PDFAge-related changes in DNA methylation (DNAm) form the basis of the most robust predictors of age-epigenetic clocks-but a clear mechanistic understanding of exactly which aspects of aging are quantified by these clocks is lacking. Here, to clarify the nature of epigenetic aging, we juxtapose the dynamics of tissue and single-cell DNAm in mice. We compare these changes during early development with those observed during adult aging in mice, and corroborate our analyses with a single-cell RNA sequencing analysis within the same multiomics dataset.
View Article and Find Full Text PDFAccording to birth certificates, the life of a child begins once their body comes out of the mother's womb. But when does their organismal life begin? Science holds a palette of answers-depending on how one defines a human life. In 1984, a commission on the regulatory framework for human embryo experimentation opted not to answer this question, instead setting a boundary, 14 days post-fertilization, beyond which any experiments were forbidden.
View Article and Find Full Text PDFSince its first description in 1906 by Dr. Alois Alzheimer, Alzheimer's disease (AD) has been the most common type of dementia. Initially thought to be caused by age-associated accumulation of plaques, in recent years, research has increasingly associated AD with lysosomal storage and metabolic disorders, and the explanation of its pathogenesis has shifted from amyloid and tau accumulation to oxidative stress and impaired lipid and glucose metabolism aggravated by hypoxic conditions.
View Article and Find Full Text PDFDuring mammalian reproduction, sperm are delivered to the female reproductive tract bathed in a complex medium known as seminal fluid, which plays key roles in signaling to the female reproductive tract and in nourishing sperm for their onwards journey. Along with minor contributions from the prostate and the epididymis, the majority of seminal fluid is produced by a somewhat understudied organ known as the seminal vesicle. Here, we report the first single-cell RNA-seq atlas of the mouse seminal vesicle, generated using tissues obtained from 23 mice of varying ages, exposed to a range of dietary challenges.
View Article and Find Full Text PDFBiochemistry (Mosc)
February 2024
AgeMeta is a database that provides systemic and quantitative description of mammalian aging at the level of gene expression. It encompasses transcriptomic changes with age across various tissues of humans, mice, and rats, based on a comprehensive meta-analysis of 122 publicly available gene expression datasets from 26 studies. AgeMeta provides an intuitive visual interface for quantification of aging-associated transcriptomics at the level of individual genes and functional groups of genes, allowing easy comparison among various species and tissues.
View Article and Find Full Text PDF