Earlier we have shown that many important properties of ionic aqueous channels in biological membranes can be imitated using simple biomimetic membranes. These membranes are composed of mixed cellulose ester-based filters, impregnated with isopropyl myristate or other esters of fatty acids, and can be used for high-throughput drug screening. If the membrane separates two aqueous solutions, combination of relatively hydrophilic polymer support with immobilized carboxylic groups results in the formation of thin aqueous layers covering inner surface of the pores, while the pore volume is filled by lipid-like substances.
View Article and Find Full Text PDFBiosens Bioelectron
October 2010
A novel label-free method is presented to detect and quantify cell-derived microparticles (MPs) by the electrochemical potential-modulated electrochemical impedance spectroscopy (EIS). MPs are present in elevated concentrations during pathological conditions and play a major role in the establishment and pathogenesis of many diseases. Considering this, accurate detection and quantification of MPs is very important in clinical diagnostics and therapeutics.
View Article and Find Full Text PDFIontophoretic and electroporation transdermal delivery modes of ionic drugs have been utilized in a number of clinical and biomedical devices. However, applications of these methods have been found challenging for the delivery of many non polar and high molecular weight clinically important drugs. The main goal of the present study is to investigate whether transdermal transport of non polar macromolecular drugs such as insulin and terbinafine can be safely enhanced as a result of their polarization and activation by AC electrokinetic forces.
View Article and Find Full Text PDFOn-line detection of serum proteins is of clinical relevance, in detecting leaks and biofouling in hemofiltration equipment, biofilm growth on prosthetic devices, or hemolysis within a prosthetic or therapeutic device. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to detect and analyze micromolar concentrations of four globular proteins of clinical importance. CV testing showed that identification and quantification of each of these proteins was possible through analysis of current changes at specific potentials.
View Article and Find Full Text PDF