Shredding of the cells is often the first step in lithium-ion battery (LIB) recycling. Thus, LiNi1/3 Mn1/3 Co1/3 O2 (NMC)/graphite lithium-ion cells from a field-tested electric vehicle were shredded and transferred to tinplate or plastic storage containers. The formation of hazardous compounds within, and being released from, these containers was monitored over 20 months.
View Article and Find Full Text PDFA two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50).
View Article and Find Full Text PDFThe thermal aging process of a commercial LiPF6 based lithium ion battery electrolyte has been investigated in view of the formation of volatile phosphorus-containing degradation products. Aging products were analyzed by GC-MS. Structure determination of the products was performed by support of chemical ionization MS in positive and negative modes.
View Article and Find Full Text PDFA method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared.
View Article and Find Full Text PDF