12-lead electrocardiogram (ECG) recordings can be collected in any clinic and the interpretation is performed by a clinician. Modern machine learning tools may make them automatable. However, a large fraction of 12-lead ECG data is still available in printed paper or image only and comes in various formats.
View Article and Find Full Text PDFStandard 12-lead electrocardiography (ECG) is used as the primary clinical tool to diagnose changes in heart function. The value of automated 12-lead ECG diagnostic approaches lies in their ability to screen the general population and to provide a second opinion for doctors. Yet, the clinical utility of automated ECG interpretations remains limited.
View Article and Find Full Text PDFObjectives: We designed an automated algorithm to classify short electrocardiogram (ECG) strips into four categories: normal rhythm, atrial fibrillation, noisy segment, or other rhythm disturbances.
Approach: The algorithm is based on identification of the R peak and recognition of the other ECG waves. Time-frequency domain features, the average and variability of the intra-beat temporal interval, and the average beat morphology were also calculated.
Background: In parallel to the introduction of mobile communication devices with high computational power and internet connectivity, high-quality and low-cost health sensors have also become available. However, although the technology does exist, no clinical mobile system has been developed to monitor the R peaks from electrocardiogram recordings in real time with low false positive and low false negative detection. Implementation of a robust electrocardiogram R peak detector for various arrhythmogenic events has been hampered by the lack of an efficient design that will conserve battery power without reducing algorithm complexity or ease of implementation.
View Article and Find Full Text PDF