Publications by authors named "Vadgama P"

Article Synopsis
  • The study examined the effectiveness and safety of reducing linezolid doses in a treatment regimen for adults with pre-extensively drug-resistant or treatment-intolerant multidrug-resistant tuberculosis.
  • Patients were enrolled in a clinical trial where they were randomly assigned to three different dosing regimens of linezolid, alongside bedaquiline and pretomanid, for a total duration of 26 weeks.
  • Results showed that the reduced dose of linezolid (300 mg/day) maintained similar cure rates as the standard dose (600 mg/day) while leading to fewer reported cases of peripheral neuropathy, suggesting a safer approach for treating this condition.
View Article and Find Full Text PDF

In this work, the enzyme aldehyde reductase, also known as aldose reductase, was synthesized and cloned from a human gene. Spectrophotometric measurements show that in presence of the nicotinamide adenine dinucleotide phosphate cofactor (NADPH), the aldehyde reductase catalyzed the reduction of glucose to sorbitol. Electrochemical measurements performed on an electrodeposited poly(methylene green)-modified gold electrode showed that in the presence of the enzyme aldehyde reductase, the electrocatalytic oxidation current of NADPH decreased drastically after the addition of glucose.

View Article and Find Full Text PDF

3D bioprinting is a major area of interest in health sciences for customized manufacturing, but lacks specific bioinks to enhance the shape fidelity of 3D bioprinting and efficiency of tissue repair for particular clinical purposes. A naringin derived bioink, which contains 1.5 mM methylacryloyl naringin and 0.

View Article and Find Full Text PDF

Background: In a close knit congregation such as prison, Tuberculosis (TB) and HIV can be major health problems. However, their prevalence in Indian prisons is under reported. This study aimed at adopting a camp based, active case finding approach to identify cases of TB, HIV and at risk prisoners in a central prison of South Gujarat.

View Article and Find Full Text PDF

Elevated lactate levels in blood (hyperlactatemia) are indications of hypoperfusion or sepsis in critical care conditions. Quantification and monitoring of this important marker is performed using intermittent blood sampling, which fails to provide a complete scenario to aid clinicians in diagnosis. The feasibility of Near Infrared (NIR) Spectroscopy as an alternative to state-of-the-art techniques in critical care environments for non-invasive and continuous monitoring of lactate has previously been established.

View Article and Find Full Text PDF

Near Infrared (800-2500 nm) spectroscopy has been extensively used in biomedical applications, as it offers rapid, in vivo, bed-side monitoring of important haemodynamic parameters, which is especially important in critical care settings. However, the choice of NIR spectrometer needs to be investigated for biomedical applications, as both the dual beam dispersive spectrophotomer and the FTNIR spectrometer have their own advantages and disadvantages. In this study, predictive analysis of lactate concentrations in whole blood were undertaken using multivariate techniques on spectra obtained from the two spectrometer types simultaneously and results were compared.

View Article and Find Full Text PDF

Increased concentrations of lactate levels in blood are often seen in patients with life-threatening cellular hypoperfusion or infections. State-of-the-art techniques used in clinical practice for measuring serum lactate concentrations rely on intermittent blood sampling and do not permit continuous monitoring of this all important parameter in critical care environments.In recent years, Near Infrared (NIR) Spectroscopy has been established as a possible alternative to existing methods that can mitigate these constraints and be used for non-invasive continuous monitoring of lactate.

View Article and Find Full Text PDF

Uninterrupted monitoring of serum lactate levels is a prerequisite in the critical care of patients prone to sepsis, cardiogenic shock, cardiac arrest, or severe lung disease. Yet there exists no device to continuously measure blood lactate in clinical practice. Optical spectroscopy together with multivariate analysis is proposed as a viable noninvasive tool for estimation of lactate in blood.

View Article and Find Full Text PDF

Quantification of lactate/lactic acid in critical care environments is essential as lactate serves as an important biochemical marker for the adequacy of the haemodynamic circulation in shock and of cell respiration at the onset of sepsis/septic shock. Hence, in this study, ATR-FTIR was explored as a potential tool for lactate measurement, as the current techniques depend on sample preparation and fails to provide rapid response. Moreover, the effects of pH on PBS samples (7.

View Article and Find Full Text PDF

The disruptive action of an acute or critical illness is frequently manifest through rapid biochemical changes that may require continuous monitoring. Within these changes, resides trend information of predictive value, including responsiveness to therapy. In contrast to physical variables, biochemical parameters monitored on a continuous basis are a largely untapped resource because of the lack of clinically usable monitoring systems.

View Article and Find Full Text PDF

In patients with life-threatening illnesses, the metabolic production and disposal of lactate are impaired, which leads to a build-up of blood lactate. In critical care units, the changes in lactate levels are measured through intermittent, invasive, blood sampling and in vitro assay. Continuous monitoring is lacking, yet such monitoring could allow early assessment of severity and prognosis to guide therapy.

View Article and Find Full Text PDF

Blood lactate is an important biomarker that has been linked to morbidity and mortality of critically ill patients, acute ischemic stroke, septic shock, lung injuries, insulin resistance in diabetic patients, and cancer. Currently, the clinical measurement of blood lactate is done by collecting intermittent blood samples. Therefore, noninvasive, optical measurement of this significant biomarker would lead to a big leap in healthcare.

View Article and Find Full Text PDF

Continuous measurement of lactate levels in the blood is a prerequisite in intensive care patients who are susceptible to sepsis due to their suppressed immune system and increased metabolic demand. Currently, there exists no noninvasive tool for continuous measurement of lactate in clinical practice. The current mode of measurement is based on arterial blood gas analyzers which require sampling of arterial blood.

View Article and Find Full Text PDF

This study assessed the solute permeability of a family of UV and moisture cured acrylates-based adhesives during ageing in pH 7.4 buffer. Acrylates have a potential role in bone fracture fixation, but their inability to allow microsolute exchange between the fractured bone surfaces may contribute to ineffective healing.

View Article and Find Full Text PDF

There is a growing interest in the design and engineering of operational biofuel cells that can be implanted. This review highlights the recent progress in the electrochemistry of biofuel cell technologies, but with a particular emphasis on the medical and physiological aspects that impact the biocompatibility of biofuel cells operating inside a living body. We discuss the challenge of supplying power to implantable medical devices, with regard to the limitations of lithium battery technology and why implantable biofuel cells can be a promising alternative to provide the levels of power required for medical devices.

View Article and Find Full Text PDF

The presence of cancer cells in body fluids confirms the occurrence of metastasis and guides treatment. A simple, fast, and homogeneous fluorescent method was developed to detect cancer cells based on catalytic hairpin assembly (CHA) and bifunctional aptamers. The bifunctional aptamer had a recognition domain for binding to target cancer cells and an initiator domain for triggering the CHA reaction.

View Article and Find Full Text PDF
Article Synopsis
  • This paper discusses a new method for storing clinical microdialysis samples using tubing, providing better options for delayed analysis compared to traditional sampling methods.
  • Samples stored in this tubing remain stable for up to 72 days when kept at -80 °C, allowing for consistent results over time.
  • The authors present a general model to help choose the right tubing parameters based on storage time and flow rate, ensuring effective performance without causing leaks in the microdialysis probe.
View Article and Find Full Text PDF

Microporous track-etched membranes serve as important permeable growth surfaces for cell culture where diffusive solute transport is needed across two growth compartments. This study has established effective solute diffusion coefficients for four probe micro-solutes: hydrogen peroxide, pyrocatechol, acetaminophen and ascorbic acid across three track-etched membranes formulated, respectively, from polycarbonate and polyethylene terephthalate. Chronoamperometry and cyclic voltammetry were used for the diffusion measurements.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) show great potential for disease diagnostics due to their specific molecular profiles. Detection of miRNAs remains challenging and often requires sophisticated platforms. Here we report a multienzyme-functionalized magnetic microcarriers-assisted isothermal strand-displacement polymerase reaction (ISDPR) for quantitative detection of miRNAs.

View Article and Find Full Text PDF

The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e.

View Article and Find Full Text PDF

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis.

View Article and Find Full Text PDF

This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip.

View Article and Find Full Text PDF

Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell.

View Article and Find Full Text PDF