1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options.
View Article and Find Full Text PDFNearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems.
View Article and Find Full Text PDFLake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth's surface. LT's mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT's 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity.
View Article and Find Full Text PDFFood quality determines the growth rate of primary consumers and ecosystem trophic efficiencies, but it is not clear whether variation in primary consumer densities control, or is controlled by, variation in food quality. We quantified variation in the density and condition of an abundant algae-eating cichlid, Tropheus brichardi, with respect to the quality and productivity of algal biofilms within and across rocky coastal sites in Lake Tanganyika, East Africa. Adjacent land use and sediment deposition in the littoral zone varied widely among sites.
View Article and Find Full Text PDFAccess to safe water is an ongoing challenge in rural areas in Tanzania where communities often lack access to improved sanitation. Methods to detect contamination of surface water bodies, such as monitoring nutrient concentrations and bacterial counts, are time consuming and results can be highly variable in space and time. On the northeast shore of Lake Tanganyika, Tanzania, the low population density coupled with the high potential for dilution in the lake necessitates the development of a sensitive method for detecting contamination in order to avoid human health concerns.
View Article and Find Full Text PDFGlob Chang Biol
December 2016
Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude.
View Article and Find Full Text PDFWhile limnological studies have emphasized the importance of grazers on algal biomass and primary production in pelagic habitats, few studies have examined their potential role in altering total ecosystem primary production and it's partitioning between pelagic and benthic habitats. We modified an existing ecosystem production model to include biotic feedbacks associated with two groups of large-bodied grazers of phytoplankton (large-bodied zooplankton and dreissenid mussels) and estimated their effects on total ecosystem production (TEP), and the partitioning of TEP between phytoplankton and periphyton (autotrophic structure) across large gradients in lake size and total phosphorus (TP) concentration. Model results indicated that these filter feeders were capable of reducing whole-lake phytoplankton production by 20-70%, and increasing whole-lake benthic production between 0% and 600%.
View Article and Find Full Text PDFEnviron Sci Technol
October 2005