The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable.
View Article and Find Full Text PDFMicrobiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected.
View Article and Find Full Text PDFOver the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription.
View Article and Find Full Text PDFBackground: The soil environment is responsible for sustaining most terrestrial plant life, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere, and how it responds to agricultural management such as crop rotations and soil tillage, is vital for improving global food production.
View Article and Find Full Text PDFSummer-growing perennial grasses such as L. cv. Bambatsi (Bambatsi panic), Kunth cv.
View Article and Find Full Text PDFSoil microbial communities have an integral association with plants and play an important role in shaping plant nutrition, health, crop productivity and product quality. The influence of bacteria and fungi on wine fermentation is well known. However, little is known about the role of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site () impacts on grape composition.
View Article and Find Full Text PDFSmall molecule discovery has benefitted from the development of technologies that have aided in the culture and identification of soil microorganisms and the subsequent analysis of their respective metabolomes. We report herein on the use of both culture dependent and independent approaches for evaluation of soil microbial diversity in the rhizosphere of canola, a crop known to support a diverse microbiome, including plant growth promoting rhizobacteria. Initial screening of rhizosphere soils showed that microbial diversity, particularly bacterial, was greatest at crop maturity; therefore organismal recovery was attempted with soil collected at canola harvest.
View Article and Find Full Text PDFApplication of plant-growth-promoting rhizobacteria (PGPR) is an environmentally sustainable option to reduce the effects of abiotic and biotic stresses on plant growth and productivity. Bacteria isolated from rain-fed agriculture field soils in the Central Himalaya Kumaun region, India, were evaluated for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Those producing ACC deaminase in high amounts were evaluated for their potential to improve wheat ( L.
View Article and Find Full Text PDFThe soilborne fungus anastomosis group (AG) 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of AG8 through disease suppression has been well documented at our study site in Avon, South Australia.
View Article and Find Full Text PDFAcidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated.
View Article and Find Full Text PDFThe influence of temperature on virus (PRD1 and ΦX174) and carboxyl-modified latex nanoparticle (50 and 100nm) attachment was examined in sand-packed columns under various physiochemical conditions. When the solution ionic strength (IS) equaled 10 and 30mM, the attachment rate coefficient (k) increased up to 109% (p<0.0002) and the percentage of the sand surface area that contributed to attachment (S) increased up to 160% (p<0.
View Article and Find Full Text PDFSoils are a sink for sulfidised-silver nanoparticles (Ag2S-NPs), yet there are limited ecotoxicity data for their effects on microbial communities. Conventional toxicity tests typically target a single test species or function, which does not reflect the broader community response. Using a combination of quantitative PCR, 16S rRNA amplicon sequencing and species sensitivity distribution (SSD) methods, we have developed a new approach to calculate silver-based NP toxicity thresholds (HCx, hazardous concentrations) that are protective of specific members (operational taxonomic units, OTUs) of the soil microbial community.
View Article and Find Full Text PDFWe examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms.
View Article and Find Full Text PDFBackground: Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The 'Biomes of Australian Soil Environments' (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function.
View Article and Find Full Text PDFThe transgenic traits associated with the majority of commercial genetically modified crops are focused on improving herbicide and insecticide management practices. The use of the transgenic technology in these crops and the associated chemistry has been the basis of studies that provide evidence for occasional improvement in environmental benefits due to the use of less residual herbicides, more targeted pesticides, and reduced field traffic. This is nicely exemplified through studies using Environmental Impact Quotient (EIQ) assessments.
View Article and Find Full Text PDF