Publications by authors named "Vaclav Pokorny"

As a part of our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for two stable polymorphs (α and γ) of glycine (aminoacetic acid, CAS RN: 56-40-6). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The literature heat capacities obtained by adiabatic calorimetry are available in the temperature interval (7-304).

View Article and Find Full Text PDF

This work describes the preparation of highly homogeneous thermoplastic starches (TPS's) with the addition of 0, 5, or 10 wt.% of maltodextrin (MD) and 0 or 3 wt.% of TiO nanoparticles.

View Article and Find Full Text PDF

Most polyurethanes (PU) are currently produced through the polyaddition reaction of polyisocyanates with polyols and chain extenders, using components of petrochemical origin. From an environmental and geopolitical point of view, and with regard to the problems of oil supply and processing, the replacement of petrochemical PU raw materials with renewable resources is highly desirable. It is also one of the principles of sustainable development and an important challenge for chemical companies and market competitiveness.

View Article and Find Full Text PDF

This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers-triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and -(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide--poly(triethylene glycol methacrylate) (PLA--PTEGMA), graft pseudothermoresponsive poly[-(2-hydroxypropyl)] methacrylate--polylactide (PHPMA--PLA), and graft amphiphilic poly[-(2-hydroxypropyl)] methacrylamide--polylactide (PHPMAA--PLA).

View Article and Find Full Text PDF

Successful generation of micelles, vesicles, and/or worms with controllable sizes was achieved through the self-assembly process of the poly[-(2-hydroxypropyl)]methacrylamide--polylactide (PHPMAA--PLA) graft copolymer within a microfluidic channel. A product diagram was created to illustrate various morphologies associated with different polymer concentrations, all while maintaining a constant flow velocity ratio between water and the polymer solution.

View Article and Find Full Text PDF

The chalcogenides of p-block elements constitute a significant category of materials with substantial potential for advancing the field of electronic and optoelectronic devices. This is attributed to their exceptional characteristics, including elevated carrier mobility and the ability to fine-tune band gaps through solid solution formation. These compounds exhibit diverse structures, encompassing both three-dimensional and two-dimensional configurations, the latter exemplified by the compound InSe.

View Article and Find Full Text PDF

Polyurethane (PU) foams are classified as physically nonrecyclable thermosets. The current effort of sustainable and eco-friendly production makes it essential to explore methods of better waste management, for instance by modifying the structure of these frequently used polymers to enhance their microbial degradability. The presence of ester links is known to be a crucial prerequisite for the biodegradability of PU foams.

View Article and Find Full Text PDF

As a follow-up to our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for -acetyl glycine amide (CAS RN: 2620-63-5), -acetyl-L-alanine amide (CAS RN: 15962-47-7), -acetyl-L-valine amide (CAS RN: 37933-88-3), -acetyl-L-isoleucine amide (CAS RN: 56711-06-9), and -acetyl-L-leucine amide (CAS RN: 28529-34-2). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The crystal heat capacities of the five -acetyl amino acid amides were measured by Tian-Calvet calorimetry in the temperature interval (266-350 K), by power compensation DSC in the temperature interval (216-471 K), and by relaxation (heat-pulse) calorimetry in the temperature interval (2-268 K).

View Article and Find Full Text PDF

A new method for the preparation of polyaniline (PANI) films that have a 2D structure and can record high active mass loading (up to 30 mg cm) via acid-assisted polymerization in the presence of concentrated formic acid was developed. This new approach represents a simple reaction pathway that proceeds quickly at room temperature in quantitative isolated yield with the absence of any byproducts and leads to the formation of a stable suspension that can be stored for a prolonged time without sedimentation. The observed stability was explained by two factors: (a) the small size of the obtained rod-like particles (50 nm) and (b) the change of the surface of colloidal PANI particles to a positively charged form by protonation with concentrated formic acid.

View Article and Find Full Text PDF

Magnetic polypyrrole-gelatin-barium ferrite (PPy-G-BaFe) cryogels/aerogels were synthesized by one-step oxidative cryopolymerization of pyrrole in the presence of various fractions of barium ferrite (BaFe) nanoparticles, dispersed in aqueous gelatin solution. The successful incorporation of BaFe into the composites was confirmed by elemental analysis and scanning electron microscopy paired with an energy-dispersive X-ray detector. The maximum achieved content of BaFe in the resulting material was 3.

View Article and Find Full Text PDF

In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K.

View Article and Find Full Text PDF

Herein, we present a versatile platform for the synthesis of pH-responsive poly([-(2-hydroxypropyl)]methacrylamide)--poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA--PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The -(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %.

View Article and Find Full Text PDF

Carboxylic acids of the Krebs cycle possess invaluable biochemical significance. Still, there are severe gaps in the availability of thermodynamic and crystallographic data, as well as ambiguities prevailing in the literature on the thermodynamic characterization and polymorph ranking. Providing an unambiguous description of the structure, thermodynamics and polymorphism of their neat crystalline phases requires a complex multidisciplinary approach.

View Article and Find Full Text PDF

Hydrogen bonding in liquids of the constitution isomers of heptan-1-ol mixed with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs), [Cmim][NTf], is investigated using both computational and experimental techniques. All-atom non-polarizable molecular-dynamics (MD) simulations predict that the hydrogen bonds gradually decay with increasing temperature. This decay is more pronounced for the branched alcohols and in the presence of the ionic liquids.

View Article and Find Full Text PDF

In an effort to establish reliable thermodynamic data for proteinogenic amino acids, heat capacities for l-histidine (CAS RN: 71-00-1), l-phenylalanine (CAS RN: 63-91-2), l-proline (CAS RN: 147-85-3), l-tryptophan (CAS RN: 73-22-3), and l-tyrosine (CAS RN: 60-18-4) were measured over a wide temperature range. Prior to heat capacity measurements, thermogravimetric analysis was performed to determine the decomposition temperatures while X-ray powder diffraction (XRPD) and heat-flux differential scanning calorimetry (DSC) were used to identify the initial crystal structures and their possible transformations. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval from 262 to 358 K and by power compensation DSC in the temperature interval from 307 to 437 K.

View Article and Find Full Text PDF

This work presents a new Knudsen effusion apparatus employing continuous monitoring of sample deposition using a quartz-crystal microbalance sensor with internal calibration by gravimetric determination of the sample mass loss. The apparatus was tested with anthracene and 1,3,5-triphenylbenzene and subsequently used for the study of sublimation behavior of several proteinogenic amino acids. Their low volatility and thermal instability strongly limit possibilities of studying their sublimation behavior and available literature data.

View Article and Find Full Text PDF