Silicon carbide has excellent mechanical properties such as high hardness and strength, but its applications for body armor and protective coating solutions are limited by its poor toughness. It has been demonstrated that epitaxial graphene-coated SiC can enhance SiC mechanical properties due to the pressure-activated phase transition into a sp diamond structure. Here, we show that atomically thin graphene coatings increase the hardness of SiC even for indentation depths of ∼10 μm.
View Article and Find Full Text PDFIn this paper, we introduce a method for mapping profiles of internal electric fields in birefringent crystals based on the electro-optic Pockels effect and measuring phase differences of low-intensity polarized light. In the case of the studied 6H-SiC crystal with graphene electrodes, the experiment is significantly affected by birefringence at zero bias voltage applied to the crystal and a strong thermo-optical effect. We dealt with these phenomena by adding a Soleil-Babinet compensator and using considerations based on measurements of crystal heating under laser illumination.
View Article and Find Full Text PDFWe performed a gradual low-temperature annealing up to 360 K on a CdZnTeSe radiation detector equipped with gold and indium electrodes under bias at both polarities. We observed significant changes in the detector's resistance and space-charge accumulation. This could potentially lead to the control and improvement of the electronic properties of the detector because the changes are accompanied with the reduction in the bulk dark current and surface leakage current.
View Article and Find Full Text PDFWe studied the spectral dependence of the Vickers microhardness HV0.025 of CdZnTe and CdZnTeSe samples upon illumination and found out that it increases over the entire applied spectral range of 1540-750 nm. We also found out that the photoconductivity and microhardness are correlated.
View Article and Find Full Text PDFThis paper describes a new method for direct measurement and evaluation of the inhomogeneous electrostatic vector field with translational symmetry in electro-optic materials exhibiting the Pockels effect. It is based on the evaluation of maximum transmittance of low intensity light passing through a sample under a voltage bias. Here, the sample is located between rotating crossed polarizers, and camera images are obtained at each point to determine the electric field.
View Article and Find Full Text PDFX- and gamma-ray detectors have broad applications ranging from medical imaging to security, non-proliferation, high-energy physics and astrophysics. Detectors with high energy resolution, e.g.
View Article and Find Full Text PDFThis paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level.
View Article and Find Full Text PDF