Purpose: Measuring and providing performance feedback to physicians has gained momentum not only as a way to comply with regulatory requirements, but also as a way to improve patient care. Measurement of structural, process, and outcome metrics in a reliable, evidence-based, specialty-specific manner maximizes the probability of improving physician performance. The manner in which feedback is provided influences whether the measurement tool will be successful in changing behavior.
View Article and Find Full Text PDFWe recently discovered an unexpected phenomenon of somatic cell reprogramming into pluripotent cells by exposure to sublethal stimuli, which we call stimulus-triggered acquisition of pluripotency (STAP). This reprogramming does not require nuclear transfer or genetic manipulation. Here we report that reprogrammed STAP cells, unlike embryonic stem (ES) cells, can contribute to both embryonic and placental tissues, as seen in a blastocyst injection assay.
View Article and Find Full Text PDFHere we report a unique cellular reprogramming phenomenon, called stimulus-triggered acquisition of pluripotency (STAP), which requires neither nuclear transfer nor the introduction of transcription factors. In STAP, strong external stimuli such as a transient low-pH stressor reprogrammed mammalian somatic cells, resulting in the generation of pluripotent cells. Through real-time imaging of STAP cells derived from purified lymphocytes, as well as gene rearrangement analysis, we found that committed somatic cells give rise to STAP cells by reprogramming rather than selection.
View Article and Find Full Text PDFThis review summarizes efforts to generate an autologous tissue-engineered trachea (TET) using various biomaterial or cell sources to make tracheal cartilage to form the structural components of a functional tracheal replacement. Biomechanical assessments of the TET showed that the cartilage stiffness was excellent in the nude models; however, the sheep autologous TET did not provide sufficient support and collapsed easily. As a result, tissue engineering technology is still far from allowing the functional recovery of patients who suffer from severe tracheal disease.
View Article and Find Full Text PDFLigament and tendon repair is an important topic in orthopedic tissue engineering; however, the cell source for tissue regeneration has been a controversial issue. Until now, scientists have been split between the use of primary ligament fibroblasts or marrow-derived mesenchymal stem cells (MSCs). The objective of this study was to show that a co-culture of anterior cruciate ligament (ACL) cells and MSCs has a beneficial effect on ligament regeneration that is not observed when utilizing either cell source independently.
View Article and Find Full Text PDFBackground: In models, isoflurane produces neural and behavioral deficits in vitro and in vivo. This study tested the hypothesis that neural stem cells are adversely affected by isoflurane such that it inhibits proliferation and kills these cells.
Methods: Sprague-Dawley rat embryonic neural stem cells were plated onto 96-well plates and treated with isoflurane, 0.
Mature adult tissues contain stem cells that express many genes normally associated with the early stage of embryonic development, when maintained in appropriate environments. Cells procured from adult tissues representative of the three germ layers (spinal cord, muscle, and lung), each exhibiting the potential to mature into cells representative of all three germ layers. Cells isolated from adult tissues of different germ layer origin were propagated as nonadherent clusters or spheres that were composed of heterogeneous populations of cells.
View Article and Find Full Text PDFFor bone tissue engineering, the benefits of incorporating mesenchymal stem cells (MSCs) into porous scaffolds are well established. There is, however, little consensus on the effects of or need for MSC handling ex vivo. Culture and expansion of MSCs adds length and cost, and likely increases risk associated with treatment.
View Article and Find Full Text PDFThe effectiveness of cell-based therapy to treat muscle disease has been hampered by difficulties in isolating, maintaining and propagating the stem cells that are needed for treatment. Here we report the isolation of muscle-derived stem cells from both young and old mice and their propagation over extended periods of time in culture as "free-floating" myospheres. Analysis of these sphere-forming cells showed that they express stem cell antigen-1 (Sca-1), beta1 integrin (CD29), Thy-1 (CD90), and CD34, but did not express CD45, CD31, or myogenic markers (Pax7, Myf5, and MyoD).
View Article and Find Full Text PDFObjective: Although pancreatic islet transplantation can now be performed minimally invasively in patients with type 1 diabetes, the availability of functional islet donors remains the chief obstacle to widespread clinical application. Tissue engineering islet cells in vitro that function when implanted in vivo provides a solution to this problem.
Research Design And Methods: Rat pancreatic islets were enzymatically dissociated into a single-cell suspension and seeded onto a polyglycolic acid (PGA) scaffold.
Nerve stem cells have a unique characteristic in that they form spherical aggregates, also termed neurospheres, in vitro. The study demonstrated the successful derivation of these neurospheres from bone marrow culture. Their plasticity as nerve stem cells was confirmed.
View Article and Find Full Text PDFBackground: We explored molecular mechanisms by which lidocaine inhibits growth in the murine embryonic fibroblast cell line NIH-3T3. Local anesthetics can adversely affect cell growth in vitro. Their effects on wound healing are controversial.
View Article and Find Full Text PDFBackground: There is an essential demand for tissue engineered autologous small-diameter vascular graft, which can function in arterial high pressure and flow circulation. We investigated the potential to engineer a three-layered robust and elastic artery using a novel hemodynamically-equivalent pulsatile bioreactor.
Methods And Results: Endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts were harvested from bovine aorta.
We describe the formation of a new composite tissue containing all of the cellular components of adjacent normal spinal tissue. Four millimeter gaps, surgically created at the level of T8-T9 in the spinal cord of 2 adult female Lewis rats, resulted in complete paralysis of the lower extremities. A biological matrix derived from previously frozen peripheral syngeneic blood was implanted into the created spinal cord defects in 2 experimental animals.
View Article and Find Full Text PDFThe trilaminate vascular architecture provides biochemical regulation and mechanical integrity. Yet regulatory control can be regained after injury without recapitulating tertiary structure. Tissue-engineered (TE) endothelium controls repair even when placed in the perivascular space of injured vessels.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a trauma problem striking mainly working age adults, therefore affecting society beyond the victims family circle. Most of the victims of SCI will never recover; therapy for this type of injury consists basically on spinal cord support and stabilization. With the discovery of stem cells (SC), SCI treatment has been given another chance.
View Article and Find Full Text PDFThe burgeoning field of regenerative medicine promises significant progress in the treatment of cardiac ischemia, liver disease, and spinal cord injury. Key to its success will be the ability to engineer tissue safely and reliably. Tissue functionality must be recapitulated in the laboratory and then integrated into surrounding tissue upon transfer to the patient.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
April 2007
Objective: One current technique to reconstruct an ear for microtia involves the use of a high density polyethylene auricular implant; however, the implant can extrude if not covered in a temporoparietal fascia flap. Theoretically, an autologous tissue engineered cartilage "bioshell" protective coating around a permanent biocompatible implant might reduce potential extrusion to avoid the flap requirement. We hypothesized that if subjected to intentional exposure, a bioshell coating over an implant would provide enhanced wound healing.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
January 2007
Background: Standard culture medium contains bovine serum. If standard culture methodology is used for future human tissue-engineering, unknown risks of infection from bovine disease or immune reaction to foreign proteins theoretically might occur. In this study we wished to evaluate the potential of chondrocyte expansion using autologous and serum free media.
View Article and Find Full Text PDF