Publications by authors named "Vaca-Gonzalez J"

In this study, we develop a comprehensive model to investigate the intricate relationship between the bone remodeling process, tumor growth, and bone diseases such as multiple myeloma. By analyzing different scenarios within the Basic Multicellular Unit, we uncover the dynamic interplay between remodeling and tumor progression. The model developed developed in the paper are based on the well accepted Komarova's and Ayati's models for the bone remodeling process, then these models were modified to include the effects of the tumor growth.

View Article and Find Full Text PDF
Article Synopsis
  • Soft tissue engineering and regenerative medicine explore how tissue structure affects performance, traditionally analyzed through histology, but now utilizing advanced imaging techniques.
  • Optical coherence tomography (OCT) is highlighted as a new, non-destructive imaging tool that offers detailed, real-time views of soft tissue microstructures.
  • Research using stress-relaxation tests demonstrated that iodixanol is an effective clearing agent for studying muscle tissues without causing lasting harm to their structure, making it a promising option for tissue analysis.
View Article and Find Full Text PDF

In this paper, we explore the effects of biological (pathological) and mechanical damage on bone tissue within a benchmark model. Using the Finite Element Methodology, we analyze and numerically test the model's components, capabilities, and performance under physiologically and pathologically relevant conditions. Our findings demonstrate the model's effectiveness in simulating bone remodeling processes and self-repair mechanisms for micro-damage induced by biological internal conditions and mechanical external ones within bone tissue.

View Article and Find Full Text PDF

This paper aims to present a comprehensive framework for coupling tumor-bone remodeling processes in a 2-dimensional geometry. This is achieved by introducing a bio-inspired damage that represents the growing tumor, which subsequently affects the main populations involved in the remodeling process, namely, osteoclasts, osteoblasts, and bone tissue. The model is constructed using a set of differential equations based on the Komarova's and Ayati's models, modified to incorporate the bio-inspired damage that may result in tumor mass formation.

View Article and Find Full Text PDF

The muscle is the principal tissue that is capable to transform potential energy into kinetic energy. This process is due to the transformation of chemical energy into mechanical energy to enhance the movements and all the daily activities. However, muscular tissues can be affected by some pathologies associated with genetic alterations that affect the expression of proteins.

View Article and Find Full Text PDF

Cartilage damage caused by trauma or osteoarthritis is a common joint disease that can increase the social and economic burden in society. Due to its avascular characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Hydrogels have been developed into one of the most suitable biomaterials for the regeneration of cartilage because of its characteristics such as high-water absorption, biodegradation, porosity, and biocompatibility similar to natural extracellular matrix.

View Article and Find Full Text PDF

This paper aims to construct a general framework of coupling tumor-bone remodeling processes in order to produce plausible outcomes of the effects of tumors on the number of osteoclasts, osteoblasts, and the frequency of the bone turnover cycle. In this document, Komarova's model has been extended to include the effect of tumors on the bone remodeling processes. Thus, we explored three alternatives for coupling tumor presence into Komarova's model: first, using a "damage" parameter that depends on the tumor cell concentration.

View Article and Find Full Text PDF
Article Synopsis
  • - This study aims to create mathematical models through multiple regression analysis to estimate how chondrocytes (cartilage cells) grow and synthesize molecules when exposed to magnetic or electric fields.
  • - Researchers used data from previous experiments with chondrocytes subjected to different intensities of magnetic (1 and 2 mT) and electric (4 and 8 mV/cm) fields, validating these models using cell proliferation and molecular expression metrics.
  • - The root square model showed high effectiveness in predicting cell behavior, with R² values reflecting strong correlation for both proliferation and glycosaminoglycan synthesis, indicating that these models could help improve cartilage recovery techniques in lab settings.
View Article and Find Full Text PDF

Electric fields (EFs) and magnetic fields (MFs) have been widely used by tissue engineering to improve cell dynamics such as proliferation, migration, differentiation, morphology, and molecular synthesis. However, variables such stimuli strength and stimulation times need to be considered when stimulating either cells, tissues or scaffolds. Given that EFs and MFs vary according to cellular response, it remains unclear how to build devices that generate adequate biophysical stimuli to stimulate biological samples.

View Article and Find Full Text PDF

Background: Mucopolysaccharidoses (MPS) are a group of inherited metabolic diseases caused by impaired function or absence of lysosomal enzymes involved in degradation of glycosaminoglycans. Clinically, MPS are skeletal dysplasias, characterized by cartilage abnormalities and disturbances in the process of endochondral ossification. Histologic abnormalities of growth cartilage have been reported at advanced stages of the disease, but information regarding growth plate pathology progression either in humans or in animal models, as well as its pathophysiology, is limited.

View Article and Find Full Text PDF

Electrical stimulation (ES) has provided enhanced chondrogenesis of mesenchymal stem cells (MSCs) cultured in micro-mass without the addition of exogenous growth factors. In this study, we demonstrate for the first time that ES of MSCs encapsulated in an injectable hyaluronic acid (HA) - gelatin (GEL) mixture enhances the chondrogenic potential of the hydrogel. Samples were stimulated for 21 days with 10 mV/cm at 60 kHz, applied for 30 min every 6 h a day.

View Article and Find Full Text PDF

Magnetic fields (MFs) have been used as an external stimulus to increase cell proliferation in chondrocytes and extracellular matrix (ECM) synthesis of articular cartilage. However, previously published studies have not shown that MFs are homogeneous through cell culture systems. In addition, variables such as stimulation times and MF intensities have not been standardized to obtain the best cellular proliferative rate or an increase in molecular synthesis of ECM.

View Article and Find Full Text PDF

The growth plate is a cartilaginous layer present from the gestation period until the end of puberty where it ossifies joining diaphysis and epiphysis. During this period several endocrine, autocrine, and paracrine processes within the growth plate are carried out by chondrocytes; therefore, a disruption in cellular functions may lead to pathologies affecting bone development. It is known that electric fields impact the growth plate; however, parameters such as stimulation time and electric field intensity are not well documented.

View Article and Find Full Text PDF

Long bone formation starts early during embryonic development through a process known as endochondral ossification. This is a highly regulated mechanism that involves several mechanical and biochemical factors. Because long bone development is an extremely complex process, it is unclear how biochemical regulation is affected when dynamic loads are applied, and also how the combination of mechanical and biochemical factors affect the shape acquired by the bone during early development.

View Article and Find Full Text PDF

Objective: Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior.

View Article and Find Full Text PDF

Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation.

View Article and Find Full Text PDF

Mechanical stimuli play a significant role in the process of long bone development as evidenced by clinical observations and in vivo studies. Up to now approaches to understand stimuli characteristics have been limited to the first stages of epiphyseal development. Furthermore, growth plate mechanical behavior has not been widely studied.

View Article and Find Full Text PDF