Biochim Biophys Acta Mol Cell Biol Lipids
October 2024
Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs.
View Article and Find Full Text PDFHepatic stellate cells (HSCs) are liver-resident cells best known for their role in vitamin A storage under physiological conditions. Upon liver injury, HSCs activate into myofibroblast-like cells, a key process in the onset of liver fibrosis. Lipids play an important role during HSC activation.
View Article and Find Full Text PDFLipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
June 2020
Vitamin A (retinol) is important for normal growth, vision and reproduction. It has a role in the immune response and the development of metabolic syndrome. Most of the retinol present in the body is stored as retinyl esters within lipid droplets in hepatic stellate cells (HSCs).
View Article and Find Full Text PDFBackground: Hepatic lipidosis is increasing in incidence in the Western world, with cats being particularly sensitive. When cats stop eating and start utilizing their fat reserves, free fatty acids (FFAs) increase in blood, causing an accumulation of triacylglycerol (TAG) in the liver.
Objective: Identifying potential new drugs that can be used to treat hepatic lipidosis in cats using a feline hepatic organoid system.
Hepatic stellate cells (HSCs) are professional lipid-storing cells and are unique in their property to store most of the retinol (vitamin A) as retinyl esters in large-sized lipid droplets. Hepatic stellate cell activation is a critical step in the development of chronic liver disease, as activated HSCs cause fibrosis. During activation, HSCs lose their lipid droplets containing triacylglycerols, cholesteryl esters, and retinyl esters.
View Article and Find Full Text PDFBackground: A link between lipid metabolism and disease has been recognized in cats. Since hepatic lipidosis is a frequent disorder in cats, the aim of the current study was to evaluate liver and plasma lipid dimorphism in healthy cats and the effects of gonadectomy on lipid profiling. From six female and six male cats plasma and liver lipid profiles before and after spaying/neutering were assessed and compared to five cats (three neutered male and two spayed female) diagnosed with hepatic lipidosis.
View Article and Find Full Text PDFActivation of hepatic stellate cells (HSCs) is a critical step in the development of liver fibrosis. During activation, HSCs lose their lipid droplets (LDs) containing triacylglycerols (TAGs), cholesteryl esters, and retinyl esters (REs). We previously provided evidence for the presence of two distinct LD pools, a preexisting and a dynamic LD pool.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
February 2017
Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC-MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species.
View Article and Find Full Text PDFHepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. We previously observed that the levels of triacylglycerol (TAG) species containing long polyunsaturated fatty acids (PUFAs) are increased in in vitro activated HSCs. Here we investigated the cause and consequences of the rise in PUFA-TAGs by profiling enzymes involved in PUFA incorporation.
View Article and Find Full Text PDFThe first aim of this study was to determine whether vitamin D supplementation influenced the effects of high vitamin A intake on new bone formation in adult cats. The second aim was to determine whether high vitamin A intake in cats caused liver pathology and, if so, whether the current upper limit for the dietary intake of vitamin A for healthy adult cats would be safe. Twenty-four healthy adult cats were divided into four groups that received a control diet supplemented with peanut oil (control), or peanut oil containing a 100-fold increase in vitamin A (HA), or a 100-fold increase in vitamin A and a fivefold increase in vitamin D (HAMD), or a 100-fold increase in vitamin A and a 65-fold increase in vitamin D (HAHD) over a period of 18 months.
View Article and Find Full Text PDFMetabolic conditions characterized by elevated free fatty acid concentrations in blood and follicular fluid are often associated with impaired female fertility. Especially elevated saturated fatty acid levels can be lipotoxic for several somatic cell types. The aim of this study was to determine the impact of elevated free fatty acid concentrations in follicular fluid on neutral lipids (fatty acids stored in lipid droplets) inside cumulus cells and oocytes and their developmental competence.
View Article and Find Full Text PDFActivation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss.
View Article and Find Full Text PDFMobilization of fatty acids from adipose tissue during metabolic stress will increase the amount of free fatty acids in blood and follicular fluid and, thus, may affect oocyte quality. In this in vitro study, the three predominant fatty acids in follicular fluid (saturated palmitic and stearic acid and unsaturated oleic acid) were presented to maturing oocytes to test whether fatty acids can affect lipid storage of the oocyte and developmental competence postfertilization. Palmitic and stearic acid had a dose-dependent inhibitory effect on the amount of fat stored in lipid droplets and a concomitant detrimental effect on oocyte developmental competence.
View Article and Find Full Text PDFThe mutant Chinese hamster ovary cell line MT58 contains a thermosensitive mutation in CTP:phosphocholine cytidylyltransferase, the regulatory enzyme in the CDP-choline pathway. As a result, MT58 cells have a 50% decrease in their phosphatidylcholine (PC) level within 24 h when cultured at the nonpermissive temperature (40 degrees C). This is due to a relative rapid breakdown of PC that is not compensated for by the inhibition of de novo PC synthesis.
View Article and Find Full Text PDFIn mammalian cells, phosphatidylethanolamine (PtdEtn) is mainly synthesized via the CDP-ethanolamine (Kennedy) pathway and by decarboxylation of phosphatidylserine (PtdSer). However, the extent to which these two pathways contribute to overall PtdEtn synthesis both quantitatively and qualitatively is still not clear. To assess their contributions, PtdEtn species synthesized by the two routes were labeled with pathway-specific stable isotope precursors, d(3)-serine and d(4)-ethanolamine, and analyzed by high performance liquid chromatography-mass spectrometry.
View Article and Find Full Text PDFDuring biomineralization the organism controls the nature, orientation, size and shape of the mineral phase. The aim of this study was to investigate whether proteins or vesicles that are constitutively released by growing ATDC5 cells have the ability to affect the formation of the calcium phosphate crystal. Therefore, subconfluent cultured ATDC5 cells were incubated for 1 h in medium without serum.
View Article and Find Full Text PDFTwo horses (a 7-year-old Groninger warmblood gelding and a six-month-old Trakehner mare) with pathologically confirmed rhabdomyolysis were diagnosed as suffering from multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder has not been recognised in animals before. Clinical signs of both horses were a stiff, insecure gait, myoglobinuria, and finally recumbency.
View Article and Find Full Text PDFMineralization is an essential requirement for normal skeletal development, but under certain pathological conditions organs like articular cartilage and cardiovascular tissue are prone to unwanted mineralization. Recent findings suggest that the mechanisms regulating skeletal mineralization may be similar to those regulating pathological mineralization. In general, three forms of cell-mediated mineralization are recognized in an organism: intramembranous ossification, endochondral ossification and pathological mineralization.
View Article and Find Full Text PDFSodium nitroprusside (SNP) is a nitric oxide (NO) donor drug, which is therapeutically used as a vasodilating drug in heart transplantations. In our previous study it was found that SNP at a concentration of 100 microM inhibited mineralization in a cell culture system, indicating that the beneficial effects of this drug may also include inhibition of vascular calcification. The aim of this study was to investigate which bioactive compounds generated from SNP inhibit mineralization.
View Article and Find Full Text PDF