Background: Pathogen reduction (PR) may be used as an alternative to gamma or x-ray irradiation (I) to prevent transfusion associated graft versus host disease (TA-GVHD) if the pathogen reduction technology has been shown to inactivate residual lymphocytes. However, as I is considered the gold standard for reducing the risk of TA-GVHD, some centers continue to perform I in addition to PR. This study investigated the effect of concurrent pathogen reduction and irradiation (PR/I) on the biochemical characteristics of apheresis platelets at day 1, 5, and 7 of storage at room temperature.
View Article and Find Full Text PDFPlatelets for transfusion are stored at room temperature (20-24°C) up to 7 days but decline in biochemical and morphological parameters during storage and can support bacterial proliferation. This decline is reduced with p38MAPK inhibitor, VX-702. Storage of platelets in the cold (4-6°C) can reduce bacterial proliferation but platelets get activated and have reduced circulation when transfused.
View Article and Find Full Text PDFBlood product transfusion can transmit viral pathogens. Pathogen reduction methods for blood products have been developed but, so far, are not available for whole blood. We evaluated if vitamin K5 (VK5) and ultraviolet A (UVA) irradiation could be used for virus inactivation in plasma and whole blood.
View Article and Find Full Text PDFBackground: The current approach to reducing bacterial contamination in blood transfusion products is through detection or pathogen reduction methods, some of which utilize ultraviolet (UV) light photosensitizers. A small number of photosensitizers are being used as single agents in combination with UV light, but their efficacy can be limited against some pathogens. Benzophenone (BP) and vitamins B1, B6, and K3 have been identified as effective UVA photosensitizers for inactivation of bacteria.
View Article and Find Full Text PDFBackground: Initial evaluation of new platelet (PLT) products for transfusion includes a clinical study to determine in vivo recovery and survival of autologous radiolabeled PLTs in healthy volunteers. These studies are expensive and do not always produce the desired results. A validated animal model of human PLTs in vivo survival and recovery used pre-clinically could reduce the risk of failing to advance product development.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
June 2020
Background: A photosensitizer is a light-activated molecule that can generate reactive oxygen species or directly interact with nucleic acids. Both consequences can be applied to reduction of pathogens in various media and to selectively attack tumor cells. Numerous natural and synthesized photosensitizers have been identified for pathogen reduction.
View Article and Find Full Text PDFSepsis is often accompanied with thrombocytopenia partly due to platelet sequestration in the lung and liver. The spleen can store up to one-third of circulating platelets and can also significantly affect platelet transfusion outcomes by accumulating platelets. However, in sepsis, it is not clear whether there are platelet changes in the spleen which could contribute to sepsis-associated thrombocytopenia and also influence platelet transfusion outcomes.
View Article and Find Full Text PDFFEMS Microbiol Lett
February 2018
Photodynamic treatment combining light and a photosensitizer molecule can be an effective method to inactivate pathogenic bacteria. This study identified vitamin K5 as an efficient photosensitizer for ultraviolet light A (UVA)-induced bacterial inactivation. Six bacterial species, Bacillus cereus (vegetative form), Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and two species of antibiotic-resistant bacteria, Pseudomonas aeruginosa* and Staphylococcus aureus*, were suspended in aqueous solutions with or without vitamin K5 and exposed to UVA irradiation.
View Article and Find Full Text PDFThe US Food and Drug Administration (FDA) held a workshop on red blood cell (RBC) product regulatory science on October 6 and 7, 2016, at the Natcher Conference Center on the National Institutes of Health (NIH) Campus in Bethesda, Maryland. The workshop was supported by the National Heart, Lung, and Blood Institute, NIH; the Department of Defense; the Office of the Assistant Secretary for Health, Department of Health and Human Services; and the Center for Biologics Evaluation and Research, FDA. The workshop reviewed the status and scientific basis of the current regulatory framework and the available scientific tools to expand it to evaluate innovative and future RBC transfusion products.
View Article and Find Full Text PDFBackground: Room temperature (RT) storage of platelets (PLTs) can support bacterial proliferation in contaminated units, which can lead to transfusion-transmitted septic reactions. Cold temperature storage of PLTs could reduce bacterial proliferation but cold exposure produces activation-like changes in PLTs and leads to their rapid clearance from circulation. Cold-induced changes are reversible by warming and periodic rewarming during cold storage (temperature cycling [TC]) has been proposed to alleviate cold-induced reduction in PLT circulation.
View Article and Find Full Text PDFReliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs.
View Article and Find Full Text PDFBackground: Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4 °C (12 hr) and 37 °C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5 °C (11 hr) and 37 °C (1 hr) were evaluated.
View Article and Find Full Text PDFBackground: Cellular prion protein (PrP(C) ) is expressed on various cell types including red blood cells (RBCs). The PrP(C) plays a key role in the pathogenesis of prion diseases, but its physiologic function remains unclear. PrP(C) is expressed on CD34+ hematopoietic stem cells and its expression is regulated during blood cell differentiation including the erythroid line.
View Article and Find Full Text PDFIntermediate beta-thalassemia has a broad spectrum of sequelae and affected subjects may require occasional blood transfusions over their lifetime to correct anemia. Iron overload in intermediate beta-thalassemia results from a paradoxical intestinal absorption, iron release from macrophages and hepatocytes, and sporadic transfusions. Pathological iron accumulation in parenchyma is caused by chronic exposure to non-transferrin bound iron in plasma.
View Article and Find Full Text PDFBeta-thalassemia results from mutations of the β-hemoglobin (Hbb) gene and reduced functional Hbb synthesis. Excess α-Hb causes globin chain aggregation, oxidation, cytoskeletal damage, and increased red blood cell clearance. These events result in anemia, altered iron homeostasis, and expansion of extramedullary erythropoiesis.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2014
This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.
View Article and Find Full Text PDFUV-based pathogen reduction technologies have been developed in recent years to inactivate pathogens and contaminating leukocytes in platelet transfusion products in order to prevent transfusion-transmitted infections and alloimmunization. UVC-based technology differs from UVA or UVB-based technologies in that it uses a specific wavelength at 254 nm without the addition of any photosensitizers. Previously, it was reported that UVC irradiation induces platelet aggregation and activation.
View Article and Find Full Text PDFBackground: Pathogen reduction technologies (PRTs) can induce platelet (PLT) lesions that reduce PLT survival and recovery from circulation and may be associated with acute lung injury (ALI).
Study Design And Methods: Human PLTs (hPLTs) in plasma with or without single or multiple Mirasol PRT treatments were assessed in vitro by aggregation and percentage of P-selectin expression. In vivo studies included PLT recovery in SCID mice and assessment of ALI in a two-event mouse model in which the sensitizing event was lipopolysaccharide injection and the second event was infusion of Mirasol-treated hPLTs.
We previously reported that ultraviolet light B (UVB)-treated human platelets (hPLTs) can cause acute lung injury (ALI) in a two-event SCID mouse model in which the predisposing event was Lipopolysaccharide (LPS) injection and the second event was infusion of UVB-treated hPLTs. To delineate contributions of host mouse platelets (mPLTs) and neutrophils in the pathogenesis of ALI in this mouse model, we depleted mPLTs or neutrophils and measured hPLT accumulation in the lung. We also assessed lung injury by protein content in bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFJ Trauma Acute Care Surg
October 2012
Objective: The hypothermia and hemostasis in severe trauma (HYPOSTAT): a new crossroads workshop was convened to evaluate the interplay among hypothermia, hemostasis, and severe trauma/hemorrhage. Trauma is the major cause of death in young individuals in the United States, with uncontrolled hemorrhage representing the major cause of preventable deaths.
Data Sources: This workshop organized by the National Heart, Lung, and Blood Institute and the US Army Medical Research and Material Command as a forum for exchange of ideas among experts from diverse fields.
Background: Platelet (PLT) storage at room temperature (RT) is limited to 5 days to prevent growth of bacteria, if present, to high levels. Storage in cold temperatures would reduce bacterial proliferation, but cold-exposed PLTs are rapidly cleared from circulation by the hepatic Ashwell-Morell (AM) receptor, which recognizes PLT surface carbohydrates terminated by β-galactose. We cycled storage temperature between 4 and 37°C to preserve PLT function and reduce bacterial growth.
View Article and Find Full Text PDFBackground: We recently reported that infusion of ultraviolet light B (UVB)-exposed human platelets (HPs) can be the second event that mediates acute lung injury (ALI) in a two-event mouse model of transfusion-related acute lung injury (mTRALI). We have now identified changes in HPs induced by UVB light and responses of the recipient animal that mediate the mTRALI.
Study Design And Methods: Effects of UVB on HPs were monitored by flow cytometry and aggregation.
Background: Ultraviolet B (UVB) light has been used alone on platelet (PLT) transfusion products to prevent alloimmunization or with chemical sensitizers to reduce pathogens. Such processing can damage PLTs and potentiate their storage lesion. Transfusion-related acute lung injury (ALI) has occurred in patients whose underlying condition led to an inflamed endothelium and who were transfused with products that contained either HLA or HNA antibodies or biologic modifiers such as lipids or antigens from stored cells.
View Article and Find Full Text PDF