We study operation of a new device, the superconducting differential double contour interferometer (DDCI), in the application for the ultrasensitive detection of magnetic flux and for digital read out of the state of the superconducting flux qubit. DDCI consists of two superconducting contours weakly coupled by Josephson junctions. In such a device a change of the critical current, caused by an external magnetic flux or a nearby electric current, happens in a step-like manner when the angular momentum quantum number changes by one in one of the two contours.
View Article and Find Full Text PDFThe performance of a great variety of electronic devices--ranging from semiconductor transistors to superconducting qubits--is hampered by low-frequency noise with spectra proportional to 1/f. The ubiquity and negative impact of 1/f noise has motivated intensive research into its cause, and it is now believed to originate from a bath of fluctuating two-level defect states (TLSs) embedded in the material. This phenomenon is commonly described by the long-established standard tunnelling model (STM) of independent TLS.
View Article and Find Full Text PDFExtraordinary Hall effect probes with 160 nm × 160 nm working area were fabricated using photo- and electron-beam lithographic procedures with the aim of direct measurements of MFM cantilever tip magnetic properties. The magnetic field sensitivity of the probes was 35 Ω T(-1). Magnetic induction of the MFM cantilever tips coated by Co and SmCo films was measured with the probes.
View Article and Find Full Text PDF