Background: Giant cell arteritis (GCA) is a systemic vasculitis that may cause ischemic stroke. Rarely, GCA can present with aggressive intracranial stenoses, which are refractory to medical therapy. Endovascular treatment (EVT) is a possible rescue strategy to prevent ischemic complications in intracranial GCA but the safety and efficacy of EVT in this setting are not well-described.
View Article and Find Full Text PDFThe management of unruptured intracranial aneurysms remains controversial. The decisions to treat are heavily informed by estimated risk of bleeding. However, these estimates are imprecise, and better methods for stratifying the risk or tailoring treatment strategy are badly needed.
View Article and Find Full Text PDFAlthough enthusiasm for transradial access for neurointerventional procedures has grown, a unique set of considerations bear emphasis to preserve safety and minimize complications. In the first part of this review series, we will review important anatomical considerations for safe and easy neuroendovascular procedures from a transradial approach. These include normal and variant radial artery anatomy, the anatomic snuffbox, as well as axillary, brachial, and great vessel arterial anatomy that is imperative for the neuroendovascular surgeon to be intimately familiar prior to pursuing transradial access procedures.
View Article and Find Full Text PDFAlthough enthusiasm for transradial access for neurointerventional procedures has grown, a unique set of considerations bear emphasis to preserve safety and minimize complications. In the first part of this review series, we reviewed anatomical considerations for safe and easy neuroendovascular procedures from a transradial approach. In this second part of the review series, we aim to (1) summarize evidence for safety of the transradial approach, and (2) explain complications and their management.
View Article and Find Full Text PDFThe simultaneous growth of robotic-assisted surgery and telemedicine in recent years has only been accelerated by the recent coronavirus disease 2019 pandemic. Robotic assistance for neurovascular intervention has garnered significant interest due to opportunities for tele-stroke models of care for remote underserved areas. Lessons learned from medical robots in interventional cardiology and neurosurgery have contributed to incremental but vital advances in medical robotics despite important limitations.
View Article and Find Full Text PDF