Publications by authors named "V Zega"

Piezoelectric micro-electro-mechanical-system (MEMS) speakers are emerging as promising implementations of loudspeakers at the microscale, as they are able to meet the ever-increasing requirements for modern audio devices to become smaller, lighter, and integrable into digital systems. In this work, we propose a finite element model (FEM)-assisted lumped-parameters equivalent circuit for a fast and accurate modeling of these types of devices. The electro-mechanical parameters are derived from a pre-stressed FEM eigenfrequency analysis, to account for arbitrarily complex geometries and for the shift of the speaker resonance frequency due to an initial non-null pre-deflected configuration.

View Article and Find Full Text PDF

Micro-Electro-Mechanical Systems revolutionized the consumer market for their small dimensions, high performances and low costs. In recent years, the evolution of the Internet of Things is posing new challenges to MEMS designers that have to deal with complex multiphysics systems experiencing highly nonlinear dynamic responses. To be able to simulate a priori and in real-time the behavior of such systems it is thus becoming mandatory to understand the sources of nonlinearities and avoid them when harmful or exploit them for the design of innovative devices.

View Article and Find Full Text PDF

High-performance locally resonant metamaterials represent the next frontier in materials technology due to their extraordinary properties obtained through materials design, enabling a variety of potential applications. The most exceptional feature of locally resonant metamaterials is the subwavelength size of their unit cells, which allows to overcome the limits in wave focusing, imaging and sound/vibration isolation. To respond to the fast evolution of these artificial materials and the increasing need for advanced and exceptional properties, the emergence of a new mechanism for wave mitigation and control consisting in a nonlinear interaction between propagating and evanescent waves has recently been theoretically demonstrated.

View Article and Find Full Text PDF

MicroElectroMechanical Systems (MEMS) resonators are attracting increasing interest because of their smaller size and better integrability as opposed to their quartz counterparts. However, thermal drift of the natural frequency of silicon structures is one of the main issues that has hindered the development of MEMS resonators. Extensive investigations have addressed both the fabrication process (e.

View Article and Find Full Text PDF

The design and the combination of innovative metamaterials are attracting increasing interest in the scientific community because of their unique properties that go beyond the ones of natural materials. In particular, auxetic materials and phononic crystals are widely studied for their negative Poisson's ratio and their bandgap opening properties, respectively. In this work, auxeticity and phononic crystals bandgap properties are properly combined to obtain a single phase periodic structure with a tridimensional wide tunable bandgap.

View Article and Find Full Text PDF