(LEXSY) system is an inexpensive and effective expression approach for various research and medical purposes. The stated advantages of this system are the possibility of obtaining the soluble product in the cytoplasm, a high probability of correct protein folding with a full range of post-translational modifications (including uniform glycosylation), and the possibility of expressing multi-subunit proteins. In this paper, a LEXSY expression system has been employed for obtaining the receptor binding domain (RBD) of the spike-protein of the SARS-CoV-2 virus and the homopentameric acetylcholine-binding protein (AChBP) from .
View Article and Find Full Text PDFIntroduction: Polymerase proteins PB1 and PB2 determine the cold-adapted phenotype of the influenza virus A/Krasnodar/101/35/59 (H2N2), as was shown earlier.
Objective: The development of the reporter construct to determine the activity of viral polymerase at 33 and 37 °C using the minigenome method.
Materials And Methods: Co-transfection of Cos-1 cells with pHW2000 plasmids expressing viral polymerase proteins PB1, PB2, PA, NP (minigenome) and reporter construct.
SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue.
View Article and Find Full Text PDFAim: Study the possibility of obtaining attenuated variants of influenza virus by including specially selected site-specific mutations into a conservative sequence of PA-gene (terminal segment of COOH-domain of the PA-gene) of a virulent strain.
Materials And Methods: A/ WSN/33 - a virulent strain of influenza virus was used in the study. Inclusion of site-specif- ic mutations into PA-gene of the A/WSN/33 virulent strain was carried out using a two-step mutation PCR.
The influenza virus matrix M1 protein is an amphitropic membrane-associated protein, forming the matrix layer immediately beneath the virus raft membrane, thereby ensuring the proper structure of the influenza virion. The objective of this study was to elucidate M1 fine structural characteristics, which determine amphitropic properties and raft membrane activities of the protein, via 3D in silico modelling with subsequent mutational analysis. Computer simulations suggest the amphipathic nature of the M1 α-helices and the existence of putative cholesterol binding (CRAC) motifs on six amphipathic α-helices.
View Article and Find Full Text PDF