Publications by authors named "V W Coljee"

Article Synopsis
  • The research focuses on how RecA family proteins assist in DNA recombination and repair by quickly joining homologous DNA, challenging previous beliefs about the irreversibility of long repeated sequences.
  • In experiments, it was found that strand exchange products up to 75 base pairs remain reversible in the presence of ATP hydrolysis, even with mismatched surrounding DNA.
  • Molecular dynamics simulations offer insights into the destabilizing effects of ATP hydrolysis on strand exchange products, leading to a new model for efficiently preventing unwanted pairings of long repeated DNA sequences.
View Article and Find Full Text PDF

Accurate sequence dependent pairing of single-stranded DNA (ssDNA) molecules plays an important role in gene chips, DNA origami, and polymerase chain reactions. In many assays accurate pairing depends on mismatched sequences melting at lower temperatures than matched sequences; however, for sequences longer than ~10 nucleotides, single mismatches and correct matches have melting temperature differences of less than 3°C. We demonstrate that appropriately grouping of 35 bases in ssDNA using abasic sites increases the difference between the melting temperature of correct bases and the melting temperature of mismatched base pairings.

View Article and Find Full Text PDF

Antibody therapeutics are one of the fastest growing classes of pharmaceuticals, with an annual US market over $20 billion, developed to treat a variety of diseases including cancer, auto-immune and infectious diseases. Most are currently administered as a single molecule to treat a single disease, however there is mounting evidence that cocktails of multiple antibodies, each with a unique binding specificity and protective mechanism, may improve clinical efficacy. Here, we review progress in the development of oligoclonal combinations of antibodies to treat disease, focusing on identification of synergistic antibodies.

View Article and Find Full Text PDF

It is well known that during homology recognition and strand exchange the double stranded DNA (dsDNA) in DNA/RecA filaments is highly extended, but the functional role of the extension has been unclear. We present an analytical model that calculates the distribution of tension in the extended dsDNA during strand exchange. The model suggests that the binding of additional dsDNA base pairs to the DNA/RecA filament alters the tension in dsDNA that was already bound to the filament, resulting in a non-linear increase in the mechanical energy as a function of the number of bound base pairs.

View Article and Find Full Text PDF

RecA-family proteins mediate homologous recombination and recombinational DNA repair through homology search and strand exchange. Initially, the protein forms a filament with the incoming single-stranded DNA (ssDNA) bound in site I. The RecA-ssDNA filament then binds double-stranded DNA (dsDNA) in site II.

View Article and Find Full Text PDF