We develop a method for universally resolving the important issue of separating spin pumping from spin rectification signals in bilayer spintronics devices. This method is based on the characteristic distinction of spin pumping and spin rectification, as revealed in their different angular and field symmetries. It applies generally for analyzing charge voltages in bilayers induced by the ferromagnetic resonance (FMR), independent of FMR line shape.
View Article and Find Full Text PDFSpin transfer appears to be a promising tool for improving spintronics devices. Experiments that quantitatively access the magnitude of the spin transfer are required for a fundamental understanding of this phenomenon. By inductively measuring spin waves propagating along a permalloy strip subjected to a large electrical current, we observed a current-induced spin wave Doppler shift that we relate to the adiabatic spin transfer torque.
View Article and Find Full Text PDF