Retinoid X receptors (RXRα, β, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors.
View Article and Find Full Text PDFThe histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied.
View Article and Find Full Text PDFHistone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the dynamic and reversible acetylation of proteins, an epigenetic regulatory mechanism associated with multiple cancers. Indeed, HDAC inhibitors are already approved in the clinic. The HAT paralogs p300 and CREB-binding protein (CBP) have been implicated in human pathological conditions including several hematological malignancies and androgen receptor-positive prostate cancer.
View Article and Find Full Text PDFIn its unliganded form, the retinoic acid receptor (RAR) in heterodimer with the retinoid X receptor (RXR) exerts a strong repressive activity facilitated by the recruitment of transcriptional corepressors in the promoter region of target genes. By integrating complementary structural, biophysical, and computational information, we demonstrate that intrinsic disorder is a required feature for the precise regulation of RAR activity. We show that structural dynamics of RAR and RXR H12 regions is an essential mechanism for RAR regulation.
View Article and Find Full Text PDF