Publications by authors named "V Viola"

Article Synopsis
  • The study aimed to assess the performance and establish the upper reference limit for high-sensitivity cardiac troponin I (hs-cTnI) using the MAGLUMI CLIA method in healthy populations.
  • Two groups of healthy adults were analyzed: one with younger adults (average age 43) and another with older adults (average age 78), focusing on blood donation volunteers.
  • Results showed that hs-cTnI levels were significantly higher in men than women, especially after age 55, confirming that the MAGLUMI CLIA method meets international diagnostic criteria for cardiac assessments.
View Article and Find Full Text PDF

Objective: To compare the treatment of osteoradionecrosis (ORN) using a protocol that incorporates antimicrobial photodynamic therapy with a conventional treatment protocol.

Methodology: This retrospective study analyzed 55 patients diagnosed with ORN at a reference hospital between 2002 and 2021. Patients were treated using two different clinical protocols.

View Article and Find Full Text PDF

Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface.

View Article and Find Full Text PDF

Alkali activated materials (AAMs) offer significant advantages over traditional materials like Portland cement, but require the use of strong alkaline solutions, which can have negative environmental impacts. This study investigates the synthesis of AAMs using metakaolin and wollastonite, aiming to reduce environmental impact by eliminating sodium silicate and using only sodium hydroxide as an activator. The hypothesis is that wollastonite can provide the necessary silicon for the reaction, with calcium from wollastonite potentially balancing the negative charges usually countered by sodium in the alkaline solution.

View Article and Find Full Text PDF

Subcortical heterotopia is a cortical malformation associated with epilepsy, intellectual disability, and an excessive number of cortical neurons in the white matter. Echinoderm microtubule-associated protein like 1 (EML1) mutations lead to subcortical heterotopia, associated with abnormal radial glia positioning in the cortical wall, prior to malformation onset. This perturbed distribution of proliferative cells is likely to be a critical event for heterotopia formation; however, the underlying mechanisms remain unexplained.

View Article and Find Full Text PDF