Publications by authors named "V Vighetto"

The horizon of nanomedicine research is moving toward the design of therapeutic tools able to be completely safe per se, and simultaneously be capable of becoming toxic when externally activated by stimuli of different nature. Among all the stimuli, ultrasounds come to the fore as an innovative approach to produce cytotoxicity on demand in presence of NPs, without invasiveness, with high biosafety and low cost. In this context, zinc oxide nanoparticles (NPs) are among the most promising metal oxide materials for theranostic application due to their optical and semi-conductor properties, high surface reactivity, and their response to ultrasound irradiation.

View Article and Find Full Text PDF

We report an accurate study on sonocatalytic properties of different ZnO micro and nanoparticles to enhance OH radical production activated by cavitation. In order to investigate some of the still unsolved aspects related to the piezocatalytic effect, the degradation of Methylene Blue and quantification of radicals production have been evaluated as function of different ultrasonic frequencies (20 kHz and 858 kHz) and dissolved gases (Ar, N and air). The results shown that at low frequency the catalytic effect of ZnO particles is well evident and influenced by particle dimension while at high frequency a reduction of the degradation efficiency have been observed using larger particles.

View Article and Find Full Text PDF

Recent advances in nanomedicine toward cancer treatment have considered exploiting liposomes and extracellular vesicles as effective cargos to deliver therapeutic agents to tumor cells. Meanwhile, solid-state nanoparticles are continuing to attract interest for their great medical potential thanks to their countless properties and possible applications. However, possible drawbacks arising from the use of nanoparticles in nanomedicine, such as the nonspecific uptake of these materials in healthy organs, their aggregation in biological environments and their possible immunogenicity, must be taken into account.

View Article and Find Full Text PDF

Ultrasounds are already broadly exploited in clinical diagnostics and are now becoming a powerful and not harmful tool in antitumoral therapies, as they are able to produce damages towards cancer cells, thank to inertial cavitation and temperature increase. The use of US alone or combined to molecular compounds, microbubbles or solid-state nanoparticles is the focus of current research and clinical trials, like thermoablation, drug sonoporation or sonodynamic therapies. In the present work, we discuss on the non-thermal effects of ultrasound and the conditions which enable oxygen radical production and which role they can have in provoking the death of different cancer cell lines.

View Article and Find Full Text PDF

Background: We propose an efficient method to modify B-cell derived EVs by loading them with a nanotherapeutic stimuli-responsive cargo and equipping them with antibodies for efficient targeting of lymphoma cells.

Results: The post-isolation engineering of the EVs is accomplished by a freeze-thaw method to load therapeutically-active zinc oxide nanocrystals (ZnO NCs), obtaining the so-called TrojanNanoHorse (TNH) to recall the biomimetism and cytotoxic potential of this novel nanoconstruct. TNHs are further modified at their surface with anti-CD20 monoclonal antibodies (TNH) achieving specific targeting against lymphoid cancer cell line.

View Article and Find Full Text PDF