Background: Smart bathroom technology offers unrivaled opportunities for the automated measurement of a range of biomarkers and other data. Unfortunately, efforts in this area are mostly driven by a technology push rather than market pull approach, which decreases the chances of successful adoption. As yet, little is known about the use cases, barriers, and desires that potential users of smart bathrooms perceive.
View Article and Find Full Text PDFBackground: Malalignment is often postulated as an important reason for the high failure rate of total ankle replacements (TARs). The correlation between TAR malalignment and clinical outcome, however, is not fully understood. Improving and expanding radiographic TAR alignment measurements in the clinic might lead to a better insight into the correlation between malalignment and the clinical outcome.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has greatly boosted working from home as a way of working, which is likely to continue for most companies in the future, either in fully remote or in hybrid form. To manage stress levels in employees working from home, insights into the stressors and destressors in a home office first need to be studied.
Objective: We present an international remote study with employees working from home by making use of state-of-the-art technology (ie, smartwatches and questionnaires through smartphones) first to determine stressors and destressors in people working from home and second to identify smartwatch measurements that could represent these stressors and destressors.
Purpose: As yet, there are no studies describing a relationship between radiographic subsidence after lumbar total disc replacement (TDR) and patient symptoms. To investigate if subsidence, in terms of penetrated bone volume or angular rotation over time (ΔPBV and ΔAR), is related to clinical outcome. To assess if subsidence can be predicted by position implant asymmetry (IA) or relative size of the TDR, areal undersizing index (AUI) on direct post-operative radiographs.
View Article and Find Full Text PDFIn the last decade, live cell fluorescence microscopy experiments have revolutionized cellular and molecular biology, enabling the localization of proteins within cellular compartments to be analysed and to determine kinetic parameters of enzymatic reactions in living nuclei to be measured. Recently, in vivo DNA labelling by DNA-stains such as DRAQ5, has provided the opportunity to measure kinetic reactions of GFP-fused proteins in targeted areas of the nucleus with different chromatin compaction levels. To verify the suitability of combining DRAQ5-staining with protein dynamic measurements, we have tested the cellular consequences of DRAQ5 DNA intercalation.
View Article and Find Full Text PDF