Female multiple mating has been extensively studied to understand how nonobvious benefits, generally thought to be of genetic nature, could overcome heavy costs such as an increased risk of infection during mating. However, the impact of infection itself on multiple mating has rarely been addressed. The interaction between the bacterium Wolbachia and its terrestrial crustacean host, Armadillidium vulgare, is a relevant model to investigate this question.
View Article and Find Full Text PDFThe worldwide increase of hybridization in different groups is thought to have become more important with the loss of isolating barriers and the introduction of invasive species. This phenomenon could result in the extinction of endemic species. This study aims at investigating the hybridization dynamics between the endemic and threatened Lesser Antillean iguana (Iguana delicatissima) and the invasive common green iguana (Iguana iguana) in the Lesser Antilles, as well as assessing the impact of interspecific hybridization on the decline of I.
View Article and Find Full Text PDFMaternally inherited Wolbachia (α-Proteobacteria) are widespread parasitic reproductive manipulators. A growing number of studies have described the presence of different Wolbachia strains within a same host. To date, no naturally occurring multiple infections have been recorded in terrestrial isopods.
View Article and Find Full Text PDFArmadillidium vulgare is a terrestrial isopod (Crustacea, Oniscidea) which harbors Wolbachia bacterial endosymbionts. A. vulgare is the major model for the study of Wolbachia-mediated feminization of genetic males in crustaceans.
View Article and Find Full Text PDFThe circadian timing system controls drug metabolism and cellular proliferation over the 24 h through molecular clocks in each cell, circadian physiology, and the suprachiasmatic nuclei--a hypothalamic pacemaker clock that coordinates circadian rhythms. As a result, both the toxicity and efficacy of over 30 anticancer agents vary by more than 50% as a function of dosing time in experimental models. The circadian timing system also down-regulates malignant growth in experimental models and possibly in cancer patients.
View Article and Find Full Text PDF