Publications by authors named "V Vaghi"

We propose a versatile method to evaluate the suitability of polymers for the fabrication of microfluidic devices for biomedical applications, based on the concept that the selection and the design of convenient materials should involve different properties depending on the final microfluidic application. Here polymerase chain reaction (PCR) is selected as biological model and target microfluidic reaction. A class of photocured siloxanes is introduced as device building polymers and copolymerization is adopted as strategy to finely tune and optimize the final material properties.

View Article and Find Full Text PDF

A new communication route among cells was reported in recent years, via extracellular vesicles and their cargo. Exosomes in particular are attracting increasing interest as privileged mediators of this cell communication route. The exosome-mediated transfer of nucleic acids, especially of microRNAs, is particularly promising for their use both as biomarkers of pathologies and as a therapeutic tool.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are endogenous, small (18-24nt), non-coding RNAs that regulate gene expression. Among miRNAs, those bound to the AGO2 protein are the functionally active fraction which mediates the cell regulatory processes and regulate messages exchanged by cells. Several methods have been developed to purify this fraction of microRNAs, such as immunoprecipitation and immunoprecipitation-derived techniques.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is encoded by multiple mRNA variants whose differential subcellular distribution constitutes a 'spatial code' for local translation of BDNF and selective morphological remodeling of dendrites. Here, we investigated where BDNF translation takes place and what are the signaling pathways involved. Cultured hippocampal neurons treated with KCl showed increased BDNF in the soma, proximal and distal dendrites, even in quaternary branches.

View Article and Find Full Text PDF

The translational machinery, i.e., the polysome or polyribosome, is one of the biggest and most complex cytoplasmic machineries in cells.

View Article and Find Full Text PDF