2'-5'-Oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) and play a critical role in limiting viral infection. dsRNA binding induces allosteric structural changes in OAS1 that reorganize its catalytic center to promote synthesis of 2'-5'-oligoadenylate and thus activation of endoribonuclease L. Specific RNA sequences and structural motifs can also enhance activation of OAS1 through currently undefined mechanisms.
View Article and Find Full Text PDFCry6Aa1 is a () toxin active against nematodes and corn rootworm insects. Its 3D molecular structure, which has been recently elucidated, is unique among those known for other toxins. Typical three-domain toxins permeabilize receptor-free planar lipid bilayers (PLBs) by forming pores at doses in the 1-50 μg/ml range.
View Article and Find Full Text PDFAdenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate.
View Article and Find Full Text PDFNucleic Acids Res
January 2015
Human 2'-5' oligoadenylate synthetase-1 (OAS1) is central in innate immune system detection of cytoplasmic double-stranded RNA (dsRNA) and promotion of host antiviral responses. However, the molecular signatures that promote OAS1 activation are currently poorly defined. We show that the 3'-end polyuridine sequence of viral and cellular RNA polymerase III non-coding transcripts is critical for their optimal activation of OAS1.
View Article and Find Full Text PDFVirus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role.
View Article and Find Full Text PDF