Publications by authors named "V V Yakushkin"

Membrane microparticles (MP) are released by activated or damaged cells and are able to accelerate blood clotting (coagulation). MP possess coagulation activity since all of them contain on their surface phosphatidylserine (PS), a substrate for the assembly of coagulation complexes, and some of them tissue factor (TF), the primary initiator of coagulation cascade reactions. We compared the coagulation activity and amount of MP in the blood of healthy donors (n=34) and patients with myocardial infarction (MI) (n=32), advanced atherosclerosis (AA) (n=32) and idiopathic pulmonary arterial hypertension (IPAH) (n=19).

View Article and Find Full Text PDF

Membrane microparticles (MP) produced upon cell activation and/or damage possess coagulation activity, i.e. ability to accelerate blood clotting.

View Article and Find Full Text PDF

: Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells.

View Article and Find Full Text PDF

Activity of tissue factor (TF) in membrane microparticles (MPs) produced in vitro by endothelial cells (ECs), monocytes, THP-1 monocytic cells, granulocytes, and platelets was investigated. ECs were isolated from human umbilical vein, and monocytes, granulocytes, and platelets - from the blood of healthy donors. ECs, monocytes, and THP-1 cells were activated by bacterial lipopolysaccharide, granulocytes - by lipopolysaccharide or phorbol myristate acetate, and platelets - by SFLLRN, thrombin receptor-activating peptide.

View Article and Find Full Text PDF

The present paper explores the role of erythrocytes in the pathogenesis of vascular diseases. The state of erythrocytes, their ionic composition and structure, and properties of erythrocytes hemoglobin were studied by using laser interference microscopy, Raman scattering spectroscopy, and capillary electrophoresis. In patients suffering from vascular disorders we identified statistically significant changes in the shape of erythrocytes, their ionic composition, and redistribution of hemoglobin throughout cells.

View Article and Find Full Text PDF