Publications by authors named "V V Tomson"

Pulmonary embolism is a life-threatening condition, which can result in respiratory insufficiency and death. Blood clots occluding branches of the pulmonary artery (PA) are traditionally considered to originate from thrombi in deep veins (usually in legs). However, growing evidence suggests that occlusion of the vessels in the lungs can develop without preceding deep vein thrombosis (DVT).

View Article and Find Full Text PDF

According to a widespread theory, thrombotic masses are not formed in the pulmonary artery (PA) but result from migration of blood clots from the venous system. This concept has prevailed in clinical practice for more than a century. However, a new technologic era has brought forth more diagnostic possibilities, and it has been shown that thrombotic masses in the PA could, in many cases, be found without any obvious source of emboli.

View Article and Find Full Text PDF

Despite the increasing use of amorphous silica nanoparticles (SNPs) in biomedical applications, their toxicity after intravenous administration remains a major concern. We investigated the effects of single 7 mg/kg intravenous infusions of 13 nm SNPs on hemodynamic parameters in rats. Hematological and biochemical parameters were assessed at 7, 30, and 60 d post treatment.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of ischemic postconditioning (IP) on the viability of neurons in various hippocampal areas as well as on cytoplasmic activity of succinatedehydrogenase (SDH) in these cells in 30 male Mongolian gerbils (Meriones unguiculatus). Ischemic brain injury was induced by bilateral common carotid artery occlusion for 7 min. IP protocol comprised 3 cycles of 15 s of reperfusion/15 s of ischemia.

View Article and Find Full Text PDF

We analyzed changes in activity of SDH, one of the most important enzymes of the Krebs cycle, in the cytoplasm of hippocampal and cortical neurons of Mongolian gerbils (Meriones unguiculatus) at the early and delayed reperfusion period after global brain ischemia. The data indicate that SDH activity in pyramidal neurons of various hippocampal areas and in neurons of II, III and V layers of cerebral cortex after 7-min forebrain ischemia depends on both the localization of these neurons and duration of the postischemic reperfusion. SDH activity in neurons significantly increased on days 2 and 7 after reperfusion.

View Article and Find Full Text PDF