Publications by authors named "V V Senchuk"

Peroxidase-catalyzed oxidation of iodide in human saliva leads to the formation of a brown product with lambda max 287 nm and 353 nm (I3-) identified by the method of UV-spectrophotometry. I3- directly reacts with starch producing the characteristic blue complex. Salivary iodide peroxidase activity was found to be from 1.

View Article and Find Full Text PDF

The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation.

View Article and Find Full Text PDF

A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constants Ki and stoichiometric inhibition coefficients f, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), the Ki values for the I- oxidation were 0.

View Article and Find Full Text PDF

Effects of melanins obtained from cultured Cladosporium cladosporidae fungi and Alpha grape on Fe(2+)-induced, Fe(2+)-ascorbate-induced, and NADPH-induced lipid peroxidation in rat liver, brain, and eye were studied. Melanins were shown to inhibit the accumulation of lipid peroxidation products in vitro. The inhibitory effects of melanins were not due to direct interactions of these pigments with superoxide anion (O2).

View Article and Find Full Text PDF

The kinetic characteristics (kcat, Km, and their ratio) for oxidation of iodide (I-) at 25 degrees C in 0.2 M acetate buffer, pH 5.2, and tetramethylbenzidine (TMB) at 20 degrees C in 0.

View Article and Find Full Text PDF