Publications by authors named "V V Mykhaĭlovych"

In the present study, the effect of heterovalent Fe ions on the dielectric, pyroelectric, and ferroelectric properties of the (1 - )AgNbO-FeNbO ( = 0.005, 0.01, 0.

View Article and Find Full Text PDF

We report here the successful shape-controlled synthesis of dielectric spinel-type ZnCrO nanoparticles by using a simple sol-gel auto-combustion method followed by successive heat treatment steps of the resulting powders at temperatures from 500 to 900 °C and from 5 to 11 h, in air. A systematic study of the dependence of the morphology of the nanoparticles on the annealing time and temperature was performed by using field effect scanning electron microscopy (FE-SEM), powder X-ray diffraction (PXRD) and structure refinement by the Rietveld method, dynamic lattice analysis and broadband dielectric spectrometry, respectively. It was observed for the first time that when the aerobic post-synthesis heat treatment temperature increases progressively from 500 to 900 °C, the ZnCrO nanoparticles: (i) increase in size from 10 to 350 nm and (ii) develop well-defined facets, changing their shape from shapeless to truncated octahedrons and eventually pseudo-octahedra.

View Article and Find Full Text PDF

In this research, AgNbO ceramics were produced by two sintering methods: reaction sintering (RS) and conventional solid-state sintering (CSSS). The process was similar for both methods, except that in RS, AgO and NbO precursors were mixed, then formed into pellets, skipping the calcination step, and sintered at 1100 °C for 6 hours. Both prepared ceramics had the same perovskite crystal structure with an orthorhombic crystal system and and 2 space groups with similar lattice dynamic vibration modes at room temperature.

View Article and Find Full Text PDF

BaTiO (BTO) nanoparticles produced by wet chemistry methods were embedded in several types of flexible materials in order to fabricate flexible electronic devices. Starting from the produced nanoparticle dielectric properties, flexible material dielectric properties were tested for high electromagnetic frequencies (30 GHz-2 THz) using time domain spectroscopy. Dielectric performances of the different materials obtained with variable nanoparticle concentrations up to 40 wt.

View Article and Find Full Text PDF

In the title polymeric coordination compound, {[FePt(CN)(HO)]·1.33CHOH} , the Fe cation (site symmetry 4/) is coordinated by the N atoms of four cyanide anions (CN) and the O atoms of two water mol-ecules, forming a nearly regular [FeNO] octa-hedron. According the Fe-N and Fe-O bond lengths, the Fe atom is in the high-spin state.

View Article and Find Full Text PDF