Publications by authors named "V V Molodina"

Su(Hw) belongs to the class of proteins that organize chromosome architecture, determine promoter activity, and participate in formation of the boundaries/insulators between the regulatory domains. This protein contains a cluster of 12 zinc fingers of the C2H2 type, some of which are responsible for binding to the consensus site. The Su(Hw) protein forms complex with the Mod(mdg4)-67.

View Article and Find Full Text PDF

Transvection is a phenomenon of interallelic communication in which enhancers can activate a specific promoter located on a homologous chromosome. Insulators play a significant role in ensuring functional interactions between enhancers and promoters. In the presented work, we created a model where two or three copies of the insulator are located next to enhancers and promoters localized on homologous chromosomes.

View Article and Find Full Text PDF

Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems.

View Article and Find Full Text PDF

Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize.

View Article and Find Full Text PDF

In Drosophila, the BEAF-32, Z4/putzig, and Chriz/Chromator proteins colocalize in the interbands of polytene chromosomes. It was assumed that these proteins can form a complex that affects the structure of chromatin. However, the mechanism of the formation of such a complex has not been studied.

View Article and Find Full Text PDF