Publications by authors named "V V Kurilin"

: Adoptive cell therapy is the most promising approach for battling cancer, with T cell receptor-engineered T (TCR-T) cell therapy emerging as the most viable option for treating solid tumors. Current techniques for preparing TCR-T cell therapy provide a limited number of candidates TCRs, missing the comprehensive view of the repertoire, which may hinder the identification of the most effective TCRs. : Dendritic cells were primed with immunogenic peptides of the antigen of interest to expand antigen-specific CD8 T lymphocytes from peripheral blood.

View Article and Find Full Text PDF

The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells.

View Article and Find Full Text PDF
Article Synopsis
  • Adoptive cell therapy using TCR-engineered T-cells shows promise in targeting tumor cells, especially cancer-testis antigens in solid tumors, despite limited testing in this area compared to blood cancers.
  • The study introduced an innovative protocol for expanding MAGE-A3-specific T-cells and utilized advanced techniques like single-cell multi-omic analysis and lentiviral engineering to enhance T-cell effectiveness.
  • Results indicated a significant increase in MAGE-A3-specific T-cells, identification of a dominant T-cell receptor, and effective cytotoxic activity against MAGE-A3-positive tumors, highlighting the success of their methodology in generating potent anti-tumor T-cells.
View Article and Find Full Text PDF

Introduction: Restoring immune tolerance is a promising area of therapy for autoimmune diseases. One method that helps restore immunological tolerance is the approach using tolerogenic dendritic cells (tolDCs). In our study, we analyzed the effectiveness of using dendritic cells transfected with DNA constructs encoding IL-10, type II collagen, and CCR9 to induce immune tolerance in an experimental model of arthritis.

View Article and Find Full Text PDF

Immunotherapy using dendritic cell-based vaccination is a natural approach using the capabilities and functions inherent in the patient's immune system to eliminate tumor cells. The development of dendritic cell-based cell technologies evolved as the disorders of dendritic cell differentiation and function in cancer were studied; some of these functions are antigen presentation, priming of cytotoxic T-lymphocytes and induction of antigen-specific immune responses. At the initial stage of technology development, it was necessary to develop protocols for the in vitro generation of functionally mature dendritic cells that were capable of capturing tumor antigens and processing and presenting them in complex with MHC to T-lymphocytes.

View Article and Find Full Text PDF