A hybrid kinetic-fluid model is used to study ionization waves (striations) in a low-current plasma column of dc discharges in noble gases. Coupled solutions of a kinetic equation for electrons, a drift-diffusion equation for ions, and a Poisson equation for the electric field are obtained to clarify the nature of plasma stratification in the positive column. A simplified two-level excitation-ionization model is used for the conditions when the nonlinear effects due to stepwise ionization, gas heating, and Coulomb interactions among electrons are negligible.
View Article and Find Full Text PDFThe entropy of a black hole and Hawking radiation should have the same temperature given by the surface gravity, within a numerical factor of the order of unity. In addition, Hawking radiation should have a thermal spectrum, which creates an information paradox. However, the thermality should be limited by greybody factors, at the very least.
View Article and Find Full Text PDFReactive oxygen and nitrogen species (RONS) can influence plant signalling, physiology and development. We have previously observed that an argon plasma jet in atmospheric air can activate plant movements and morphing structures in the Venus flytrap and Mimosa pudica similar to stimulation of their mechanosensors in vivo. In this paper, we found that the Venus flytrap can be activated by plasma jets without direct contact of plasma with the lobe, midrib or cilia.
View Article and Find Full Text PDFLow temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo.
View Article and Find Full Text PDFGlutamate antibodies intranasally administered to Wistar rats at a dose of 300 μg/kg reduced the elevated levels of expression of Aifml, Casp3, and Parp 1 genes in the prefrontal cortex and Aifml and Casp3 genes in the hippocampus on the third day after administration of the β-amyloid fragment Aβ25-35 into the Meynert nuclei of the brain. Changes in Aifm1, Bax, Casp3, and Parp 1 gene expression were not found in the hypothalamus, and changes in Bax gene expression were not found in the brain structures studied. The discovered features of gene expression in the prefrontal cortex and hippocampus are considered in terms of development of various cell-death programs, which are modulated by glutamate antibodies.
View Article and Find Full Text PDF