Accumulating data suggest that the brain undergoes various changes during aging. Among them are loss of both white and gray matter, neurons and synapses degeneration, as well as oxidative, inflammatory, and biochemical changes. The above-mentioned age-related features are closely related to autophagy and mitochondria.
View Article and Find Full Text PDFInteractions between the endoplasmic reticulum (ER) and mitochondria have received insufficient attention until recently. However, distorted contacts between the ER and mitochondria were identified as an important factor in the etiopathogenesis of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In view of these new data, the mechanisms of ER-mitochondrial interactions are necessary to study in detail in order to develop new diagnostic and therapeutic approaches to neurodegenerative diseases and to extend basic knowledge of the physiology of the eukaryotic cell.
View Article and Find Full Text PDFBackground: Macrophages play a key role in liver regeneration. The fates of resident macrophages after 70% resection are poorly investigated. In this work, using the MARCO macrophage marker (abbreviated from macrophage receptor with collagenous structure), we studied the dynamics of mouse liver resident macrophages after 70% resection.
View Article and Find Full Text PDFAlzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders.
View Article and Find Full Text PDF