Endothelin-1 (ET-1) overactivity has been implicated as a factor contributing to glaucomatous neuropathy, and it has been utilized in animal models of retinal ischemia. The functional effects of long-term ET-1 exposure and possible compensatory mechanisms have, however, not been investigated. This was therefore the purpose of our study.
View Article and Find Full Text PDFRetinal ischemia remains a major cause of blindness in the world with few acute treatments available. Recent emphasis on retinal vasculature and the ophthalmic artery's vascular properties after ischemia has shown an increase in vasoconstrictive functionality, as previously observed in cerebral arteries following stroke. Specifically, endothelin-1 (ET-1) receptor-mediated vasoconstriction regulated by the MEK/ERK1/2 pathway.
View Article and Find Full Text PDFCognitive problems occur in asymptomatic gene carriers of Huntington's disease (HD), and mouse models of the disease exhibit impaired learning and substantial deficits in the cytoskeletal changes that stabilize long-term potentiation (LTP). The latter effects may be related to the decreased production of brain-derived neurotrophic factor (BDNF) associated with the HD mutation. This study asked whether up-regulating endogenous BDNF levels with an ampakine, a positive modulator of AMPA-type glutamate receptors, rescues plasticity and reduces learning problems in HD (CAG140) mice.
View Article and Find Full Text PDFStabilization of long-term potentiation (LTP) depends on multiple signaling cascades linked to actin polymerization. We used one of these, involving phosphorylation of the regulatory protein cofilin, as a marker to test whether LTP-related changes occur in hippocampal synapses during unsupervised learning. Well handled rats were allowed to explore a compartmentalized environment for 30 min after an injection of vehicle or the NMDA receptor antagonist (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP).
View Article and Find Full Text PDFSuprasacral spinal cord injury induces changes in the mechanical and neuronal properties of the bladder resulting in bladder areflexia followed by bladder-sphincter dyssynergia and detrusor muscle hypertrophy, which lead to urinary retention and increased bladder size. These changes are most often quantified using highly skilled urodynamic techniques that involve catheterization. We investigated whether a hand-held digital ultrasound imaging system could monitor urinary retention in the bladder following spinal cord injury in adult rats.
View Article and Find Full Text PDF