Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD.
View Article and Find Full Text PDFIn this paper, we provide a new experimental insight into the lasing process in the erbium-doped tellurite glass fiber at high diode-pump powers and pumping pulse durations. It is shown that lasing occurs at two wavelengths. Initially, at a fixed wavelength of 2.
View Article and Find Full Text PDFThe generation of coherent light based on inelastic stimulated Raman scattering in photonic microresonators has been attracting great interest in recent years. Tellurite glasses are promising materials for such microdevices since they have large Raman gain and large Raman frequency shift. We experimentally obtained Raman lasing at a wavelength of 1.
View Article and Find Full Text PDFThis Letter reports the experimental realization, for the first time to our knowledge, of lasing in an erbium-doped tellurite fiber at 2.72 µm. The key to the successful implementation was the use of advanced technology for obtaining ultra-dry preforms of tellurite glasses, as well as the creation of single-mode Er-doped tungsten-tellurite fibers with an almost imperceptible absorption band of hydroxyl groups, with a maximum of ∼3 µm.
View Article and Find Full Text PDFThis paper presents an experimental study of broadband mid-IR amplification that is carried out, for the first time, to the best of our knowledge, in an erbium-doped tungsten tellurite fiber. A simple, robust supercontinuum source based on a tapered germanate fiber is developed as a seed input in the region of 1.5-3 µm.
View Article and Find Full Text PDF