Carbon materials have paramount importance in various fields of materials science, from electronic devices to industrial catalysts. The properties of these materials are strongly related to the distribution of defects-irregularities in electron density on their surfaces. Different materials have various distributions and quantities of these defects, which can be imaged using a procedure that involves depositing palladium nanoparticles.
View Article and Find Full Text PDFAutomated computational analysis of nanoparticles is the key approach urgently required to achieve further progress in catalysis, the development of new nanoscale materials, and applications. Analysis of nanoscale objects on the surface relies heavily on scanning electron microscopy (SEM) as the experimental analytic method, allowing direct observation of nanoscale structures and morphology. One of the important examples of such objects is palladium on carbon catalysts, allowing access to various chemical reactions in laboratories and industry.
View Article and Find Full Text PDFThe influence of modifying nanopowders on the spreading and crystallization of a nickel droplet on a porous steel substrate is analyzed. For this purpose, a model has been developed for the spreading of a drop of liquid metal after its high-speed collision with a heated porous substrate. Due to the high impact velocity, the process of metal crystallization is considered after the complete spreading of the drop using the model of heterogeneous nucleation and macroscopic growth of the solid phase, taking into account the size and capillary effects.
View Article and Find Full Text PDFSparkling drinks such as cola can be considered an affordable and inexpensive starting material consisting of carbohydrates and sulfur- and nitrogen-containing organic substances in phosphoric acid, which makes them an excellent precursor for the production of heteroatom-doped carbon materials. In this study, heteroatom-doped carbon materials were successfully prepared in a quick and simple manner using direct carbonization of regular cola and diet cola. The low content of carbon in diet cola allowed reaching a higher level of phosphorus in the prepared carbon material, as well as obtaining additional doping with nitrogen and sulfur due to the presence of sweeteners and caffeine.
View Article and Find Full Text PDFSmoothness/defectiveness of the carbon material surface is a key issue for many applications, spanning from electronics to reinforced materials, adsorbents and catalysis. Several surface defects cannot be observed with conventional analytic techniques, thus requiring the development of a new imaging approach. Here, we evaluate a convenient method for mapping such "hidden" defects on the surface of carbon materials using 1-5 nm metal nanoparticles as markers.
View Article and Find Full Text PDF