Both annual (cotton, flax, hemp, etc.) and perennial (trees and grasses) plants can serve as a source of cellulose for fiber production. In recent years, the perennial herbaceous plant miscanthus has attracted particular interest as a popular industrial plant with enormous potential.
View Article and Find Full Text PDFBacterial nanocellulose (BNC) is considered a promising alternative to microcrystalline cellulose, as well as an ingredient in low-calorie dietary products. However, the risks of BNC when consumed with food are not well characterized. The aim of this study is to investigate the impact of BNC on immune function, the intestinal microbiome, intestinal barrier integrity, and allergic sensitization in subacute experiments on rats.
View Article and Find Full Text PDFPolymers (Basel)
April 2024
Cellulose nitrates (CNs)-blended composites based on celluloses of bacterial origin (bacterial cellulose (BC)) and plant origin (oat-hull cellulose (OHC)) were synthesized in this study for the first time. Novel CNs-blended composites made of bacterial and plant-based celluloses with different BC-to-OHC mass ratios of 70/30, 50/50, and 30/70 were developed and fully characterized, and two methods were employed to nitrate the initial BC and OHC, and the three cellulose blends: the first method involved the use of sulfuric-nitric mixed acids (MAs), while the second method utilized concentrated nitric acid in the presence of methylene chloride (NA + MC). The CNs obtained using these two nitration methods were found to differ between each other, most notably, in viscosity: the samples nitrated with NA + MC had an extremely high viscosity of 927 mPa·s through to the formation of an immobile transparent acetonogel.
View Article and Find Full Text PDFThis study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from . The starting cellulose for them was isolated by successive treatments of the feedstock with HNO and NaOH solutions. The cellulose was subjected to enzymatic hydrolysis for 2, 8, and 24 h.
View Article and Find Full Text PDFBiodegradable bacterial nanocellulose (BNC) is a highly in-demand but expensive polymer, and the reduction of its production cost is an important task. The present study aimed to biosynthesize BNC on biologically high-quality hydrolyzate media prepared from miscanthus and oat hulls, and to explore the properties of the resultant BNC depending on the microbial producer used. In this study, three microbial producers were utilized for the biosynthesis of BNC: individual strains B-12429 and B-12431, and symbiotic Sa-12.
View Article and Find Full Text PDF