Publications by authors named "V V Bruevich"

Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced.

View Article and Find Full Text PDF

The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead-halide perovskite field-effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor-phase epitaxy technique that results in large-area single-crystalline cesium lead bromide (CsPbBr ) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin-film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap-free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall-effect carrier mobilities as functions of temperature.

View Article and Find Full Text PDF

High structural quality of crystalline organic semiconductors is the basis of their superior electrical performance. Recent progress in quasi two-dimensional (2D) organic semiconductor films challenges bulk single crystals because both demonstrate competing charge-carrier mobilities. As the thinnest molecular semiconductors, monolayers offer numerous advantages such as unmatched flexibility and light transparency as well  they are an excellent platform for sensing.

View Article and Find Full Text PDF

Recent theoretical studies have shown that charge transport in high-mobility organic semiconductors is limited by low-frequency vibrations because of strong non-local electron-phonon interaction. Here we investigate two high-electron-mobility organic semiconductors with similar molecular structures but considerably different crystal packings, TCNQ and F2-TCNQ, and reveal the relationship between the experimental low-frequency Raman spectra and the calculated contributions of various vibrational modes to the electron-phonon interaction. We suggest that the combination of Raman spectroscopy with solid-state DFT is a powerful tool for probing electron-phonon interaction and focused search for high-mobility organic semiconductors.

View Article and Find Full Text PDF

In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence.

View Article and Find Full Text PDF