The catalytic potential of flexible metal-organic frameworks (MOFs) remains underexplored, particularly in liquid-phase reactions. This study employs MIL-53(Cr), a prototypical "breathing" MOF capable of structural adaptation via pore size modulation, as a photocatalyst for the dehalogenation of aryl halides. Powder X-ray diffraction and Pair Distribution Function analyses reveal that organic solvents influence pore opening, while substrates and products dynamically adjust the framework configuration during catalysis.
View Article and Find Full Text PDFThe approach of employing multivariate MOFs was used to fine-tune the mechanical properties of the flexible framework DUT-49. XRD, NMR and physisorption studies showed that the partial incorporation of a more rigid linker into the DUT-49 framework enables stabilization of the metastable open pore phase, which led to a two-fold amplification of the expelled gas amount upon the "negative gas adsorption" transition.
View Article and Find Full Text PDFCrystal size engineering allows tailoring of flexible metal-organic frameworks (MOFs) to achieve new properties. The gating type flexibility of the DUT-8(Zn) ([Zn(2,6-ndc)(dabco)], 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.
View Article and Find Full Text PDF