This study is devoted to the confinement effects on freezing and melting in electrochemical systems containing nanomaterial electrodes and liquid electrolytes. The melting of nanoparticles formed upon freezing of liquids confined in pores of disordered nanostructured -type silicon has been studied by low-temperature differential scanning calorimetry. Experimental results obtained for deionized water, an aqueous solution of potassium sulfate, and -decane are presented.
View Article and Find Full Text PDFThe arrays of metallic nanowires are considered as promising precursors for 1D semiconductor nanostructures after appropriate treatment at temperatures close to the melting point. Therefore the melting behaviour of the metallic structures in oxide templates is a key parameter for the subsequent conversion process. The present paper focuses on understanding of the effect of mechanical stress generated during heating on the melting point of the metal nanowires deposited into the pores of anodic alumina.
View Article and Find Full Text PDF