This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.
View Article and Find Full Text PDFWe report details on the synthesis and properties of barium praseodymium tungstate, BaPrWO, a double perovskite that has not been synthesized before. Room-temperature (RT) powder X-ray diffraction identified the most probable space group (SG) as monoclinic 2/, but it was only slightly distorted from the cubic structure. X-ray photoelectron spectroscopy confirmed that the initial (postsynthesis) material contained praseodymium in both 3+ and 4+ charge states.
View Article and Find Full Text PDFA 0.25% iron (Fe)-doped LiGaO phosphor was synthesized by a high-temperature solid-state reaction method. The phosphor was characterized utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), high-pressure photoluminescence, and photoluminescence decay measurement techniques using diamond anvil cells (DACs).
View Article and Find Full Text PDFThis comprehensive work showcases two novel, rock-salt-type minerals in the form of amphoteric cerium-tungstate double perovskite and ilmenite powders created via a high-temperature solid-state reaction in inert gases. The presented studies have fundamental meaning and will mainly focus on a detailed synthesis description of undoped structures, researching their possible polymorphism in various conditions and hinting at some nontrivial physicochemical properties like charge transfer for upcoming optical studies after eventual doping with selectively chosen rare-earth ions. The formerly mentioned, targeted ABB'X group of compounds contains mainly divalent alkali cations in the form of A = Ba, Ca sharing, here, oxygen-arranged clusters (X = O) with purposely selected central ions from f-block B = Ce and d-block B' = W since together they often possess some exotic properties that could be tuned and implemented into futuristic equipment like sensors or energy converters.
View Article and Find Full Text PDF