Background: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms.
View Article and Find Full Text PDFAlternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy.
View Article and Find Full Text PDFBackground: Overriding the differentiation blockage in acute myeloid leukemia (AML) is the most successful mode-of-action in leukemia therapy - now curing the vast majority of patients with acute promyelocytic leukemia (APL) using all-trans retinoic acid (ATRA)-based regimens. Similar approaches in other leukemia subtypes, such as IDH1/2-mutated AML, are under active investigation. We herein present successful release of the differentiation blockage upon treatment with the natural (-)-Δ-Tetrahydrocannabinol isomer dronabinol in vitro and in vivo.
View Article and Find Full Text PDFBackground: Circulating tumor cells (CTCs) are important for metastatic dissemination of cancer. They can provide useful information, regarding biological features and tumor heterogeneity; however, their detection and characterization are difficult due to their limited number in the bloodstream and their mesenchymal characteristics. Therefore, new biomarkers are needed to address these questions.
View Article and Find Full Text PDFBackground: Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia.
View Article and Find Full Text PDF