Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades.
View Article and Find Full Text PDFDopamine (DA) release in striatal circuits, including the nucleus accumbens medial shell (mNAcSh), tracks separable features of reward like motivation and reinforcement. However, the cellular and circuit mechanisms by which DA receptors transform DA release into distinct constructs of reward remain unclear. Here we show that DA D3 receptor (D3R) signaling in the mNAcSh drives motivated behavior in mice by regulating local microcircuits.
View Article and Find Full Text PDFHypophosphatasia (HPP) is a rare inherited disorder characterized by the decreased activity of tissue-nonspecific alkaline phosphatase (TNSALP), caused by mutations in the gene. The aim of this study was to conduct differential diagnostics in HPP patients using whole-exome sequencing (WES). The medical records of HPP patients and the genetic testing of the gene were reviewed.
View Article and Find Full Text PDFPre-clinical data suggest that increased circulating growth differentiation factor 15 (GDF15) is a cause of both anorexia/cachexia syndromes and hyperemesis gravidarum in pregnancy, serious conditions with no highly effective treatment. A phase 2 study of a therapeutic GDF15 monoclonal antibody in the New England Journal of Medicine suggests that effective treatment of anorexia/cachexia in cancer may be approaching.
View Article and Find Full Text PDF