Publications by authors named "V Tropepe"

DARPP-32 (dopamine and cAMP-regulated phosphoprotein Mr. 32 kDa) is a phosphoprotein that is modulated by multiple receptors integrating intracellular pathways and playing roles in various physiological functions. It is regulated by dopaminergic receptors through the cAMP/protein kinase A (PKA) pathway, which modulates the phosphorylation of threonine 34 (Thr34).

View Article and Find Full Text PDF

Müller glia (MG) are a relatively quiescent radial glial cell population capable of dedifferentiating to regenerate cells in the zebrafish retina that are lost due to damage. Here, we provide a protocol to both quantify MG cell dedifferentiation behavior during a regenerative response and isolate MG cells by fluorescence activated cell sorting (FACS). First, the retina is exposed to high-intensity light to induce retinal damage and either processed for immunohistochemistry or live MG cells are isolated by FACS that can be used for subsequent genomic or transcriptomic analyses.

View Article and Find Full Text PDF

Blindness associated with Usher syndrome type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown because most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 genes, protocadherin-15b (pcdh15b), a putative cell adhesion molecule.

View Article and Find Full Text PDF

How lineage and the microenvironment influence stem cell homeostasis at a population level remains unresolved. In this issue of Cell Stem Cell, Dray et al. (2021) use in vivo imaging and statistical modeling to discover a key role for local progenitor cell descendants in constraining neural stem cell divisions.

View Article and Find Full Text PDF

The vertebrate retina develops from a specified group of precursor cells that adopt distinct identities and generate lineages of either the neural retina, retinal pigmented epithelium, or ciliary body. In some species, including teleost fish and amphibians, proliferative cells with stem-cell-like properties capable of continuously supplying new retinal cells post-embryonically have been characterized and extensively studied. This region, termed the ciliary or circumferential marginal zone (CMZ), possibly represents a conserved retinal stem cell niche.

View Article and Find Full Text PDF