Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing.
View Article and Find Full Text PDFHuman papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms.
View Article and Find Full Text PDFHuman papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers.
View Article and Find Full Text PDFWhile a small proportion of high-risk (HR) alpha (α) human papillomaviruses (HPVs) is associated with numerous human malignancies, of which cervical cancer is the most prevalent, beta (β) HPVs predominantly act as co-factors in skin carcinogenesis. A characteristic feature of both α- and β-E6 oncoproteins is the presence of the LXXLL binding motif, which α-E6s utilize to form a complex with E6AP and which enables β-E6s to interact with MAML1. Here we show that multiple α-E6 oncoproteins bind to MAML1 via the LXXLL binding motif and that this results in increased protein stability.
View Article and Find Full Text PDF