Publications by authors named "V Thacker"

The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacterium tuberculosis forms biofilm-like cords that enhance its virulence, suppress the immune response, and promote cell death in lung tissues.
  • These cords maintain structural integrity and resist antibiotic treatment due to their unique biophysical properties, allowing bacteria to remain active even in hostile environments.
  • The research offers insights into how the mechanical properties of these bacterial aggregates influence tuberculosis infection and treatment effectiveness, highlighting the importance of understanding biofilm structures beyond individual bacterial behavior.
View Article and Find Full Text PDF

Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease. Multiple factors can contribute to ageing-associated inflammation; however, the molecular pathways that transduce aberrant inflammatory signalling and their impact in natural ageing remain unclear. Here we show that the cGAS-STING signalling pathway, which mediates immune sensing of DNA, is a critical driver of chronic inflammation and functional decline during ageing.

View Article and Find Full Text PDF

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs ). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome.

View Article and Find Full Text PDF

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging.

View Article and Find Full Text PDF