Publications by authors named "V T Iaroshenko"

Activation of phenols by a Ru-catalyst allows for the resulting η-phenoxo complex to selectively react with a variety of nucleophiles under mechanochemical conditions. Conversion of phenolic hydroxy groups without derivatization is important for late-stage modifications of pharmaceuticals and in the context of lignin-material processing. We present a one-step, Ru-catalyzed cross-coupling of phenols with boronic acids, aryl trialkoxysilanes and potassium benzoyltrifluoroborates under mechano-chemical conditions.

View Article and Find Full Text PDF

A new method has been introduced that is able to tackle the complexities of N-C(O) activation in amide moieties through utilization of pyrylium tetrafluoroborate in a mechanochemical setting, where amide bonds undergo activation and subsequent conversion to biaryl ketones. Due to the employment of a mechanochemical setting, the reaction conforms to green chemistry principles, offering an environmentally friendly approach to traditional amide derivatization techniques that rely on transition metals to achieve further functionalization.

View Article and Find Full Text PDF

The stoichiometric defluorinative functionalization of ArCF is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions.

View Article and Find Full Text PDF

The amide bond is prominent in natural and synthetic organic molecules endowed with activity in various fields. Among a wide array of amide synthetic methods, substitution on a pre-existing (O)C-N moiety is an underexplored strategy for the synthesis of amides. In this work, we disclose a new protocol for the defluorinative arylation of aliphatic and aromatic trifluoroacetamides yielding aromatic amides.

View Article and Find Full Text PDF

Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency.

View Article and Find Full Text PDF